Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 8;67(Pt 2):o288. doi: 10.1107/S1600536810054656

N-Cyclo­hexyl-2-(5-meth­oxy-1H-indol-3-yl)-2-oxoacetamide

Jing Liu a, Yong-Feng Liu b, Shi Zhang b, Ying Gao b, Hong Chen c,*
PMCID: PMC3051520  PMID: 21522980

Abstract

In the title compound, C17H20N2O3, the cyclo­hexane ring adopts a chair conformation. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the ac plane.

Related literature

For the biological activity of indole derivatives, see: Souli et al. (2008); Chai et al. (2006); Radwan et al. (2007); Karthikeyan et al., (2009). For details of the synthesis, see: Bacher et al. (2001). For similar structures, see: Feng et al. (2008); Sonar et al. (2006).graphic file with name e-67-0o288-scheme1.jpg

Experimental

Crystal data

  • C17H20N2O3

  • M r = 300.35

  • Monoclinic, Inline graphic

  • a = 5.083 (3) Å

  • b = 27.336 (13) Å

  • c = 5.220 (3) Å

  • β = 91.977 (12)°

  • V = 724.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.10 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.981, T max = 0.991

  • 7342 measured reflections

  • 1764 independent reflections

  • 1569 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.076

  • S = 1.02

  • 1764 reflections

  • 208 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054656/cv5025sup1.cif

e-67-0o288-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054656/cv5025Isup2.hkl

e-67-0o288-Isup2.hkl (86.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.96 (3) 1.90 (3) 2.840 (2) 164 (3)
N2—H2⋯O3ii 0.88 (3) 2.09 (3) 2.926 (3) 160 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 30873363), the Program of the Science Foundation of Tianjin (grant No. 08JCYBJC070000) and the Major Program of the Science Foundation of Tianjin (grant No. 09ZCKFSH01700).

supplementary crystallographic information

Comment

Indole and their derivatives are well known as substances exhibiting various biological activiies, such as anti-cancer (Souli et al., 2008), anti-viral (Chai et al., 2006), anti-tubercular (Karthikeyan et al., 2009) and anti-inflammatory (Radwan et al., 2007). In our search for new indole derivatives with improved activities, we have synthesized the title compound, (I). Here we report its crystal structure.

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Feng et al., 2008; Sonar et al., 2006). The cyclohexane ring (C12—C17) adopts a chair conformation. In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to the ac plane.

Experimental

The target compound was synthesized by two steps. Oxalyl chloride was added dropwise to a solution of 5-methoxy-indole in dry ether, the crude product 5-methoxyindol-3-yl-glyoxyl chloride, cyclohexylamine, two drops of triethylamine in dry dichloromethane. The reaction mixture was washed with water and dried over MgSO4 and concentrated in vacuo (Bacher et al., 2001). The residue was resolved in a methanol solution. Slow evaporation over two weeks at room temperature gave light-yellow crystals suitable for X-ray analysis.

Refinement

C-bound H atoms were geometrically positioned (C—H = 0.95–1.00 Å), and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C). Amino H atoms were located on a difference map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

View of the title compound, with displacement ellipsoids drawn at the 40% probability level.

Crystal data

C17H20N2O3 F(000) = 320
Mr = 300.35 Dx = 1.376 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 2636 reflections
a = 5.083 (3) Å θ = 1.5–27.9°
b = 27.336 (13) Å µ = 0.10 mm1
c = 5.220 (3) Å T = 113 K
β = 91.977 (12)° Prism, colourless
V = 724.9 (6) Å3 0.20 × 0.18 × 0.10 mm
Z = 2

Data collection

Rigaku Saturn CCD area-detector diffractometer 1764 independent reflections
Radiation source: rotating anode 1569 reflections with I > 2σ(I)
multilayer Rint = 0.042
Detector resolution: 14.63 pixels mm-1 θmax = 27.9°, θmin = 1.5°
ω and φ scans h = −6→6
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −36→31
Tmin = 0.981, Tmax = 0.991 l = −6→6
7342 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0439P)2] where P = (Fo2 + 2Fc2)/3
1764 reflections (Δ/σ)max = 0.003
208 parameters Δρmax = 0.23 e Å3
1 restraint Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Along with the meaningless absolute structure parameter value (and s.u. value) obtained from any refinement with Friedel pairs, as justification of the merging of Friedel-pair data.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.1844 (3) 0.03318 (6) 0.3071 (3) 0.0242 (4)
O2 −0.1506 (3) 0.20016 (5) 0.8241 (3) 0.0181 (3)
O3 0.3519 (3) 0.28545 (6) 0.8311 (3) 0.0209 (4)
N1 0.4663 (4) 0.19176 (7) 0.2050 (3) 0.0175 (4)
N2 −0.0791 (4) 0.29907 (6) 0.8997 (3) 0.0167 (4)
C1 −0.3621 (4) 0.03287 (9) 0.5127 (5) 0.0241 (5)
H1A −0.2627 0.0360 0.6761 0.036*
H1B −0.4607 0.0021 0.5106 0.036*
H1C −0.4851 0.0603 0.4927 0.036*
C2 −0.0281 (4) 0.07411 (8) 0.2854 (4) 0.0191 (5)
C3 0.1505 (4) 0.07156 (8) 0.0851 (4) 0.0207 (5)
H3 0.1508 0.0435 −0.0223 0.025*
C4 0.3242 (4) 0.10905 (8) 0.0430 (4) 0.0185 (4)
H4 0.4446 0.1075 −0.0920 0.022*
C5 0.3169 (4) 0.14924 (7) 0.2052 (4) 0.0158 (4)
C6 0.3895 (4) 0.22142 (8) 0.3936 (4) 0.0182 (4)
H6 0.4632 0.2526 0.4319 0.022*
C7 0.1850 (4) 0.19958 (8) 0.5251 (4) 0.0147 (4)
C8 0.1372 (4) 0.15268 (8) 0.4031 (4) 0.0153 (4)
C9 −0.0386 (4) 0.11418 (8) 0.4453 (4) 0.0170 (4)
H9 −0.1603 0.1156 0.5792 0.020*
C10 0.0403 (4) 0.22048 (7) 0.7283 (4) 0.0150 (4)
C11 0.1203 (4) 0.27147 (7) 0.8258 (4) 0.0154 (4)
C12 −0.0360 (4) 0.35000 (7) 0.9780 (4) 0.0168 (4)
H12 0.1085 0.3636 0.8739 0.020*
C13 −0.2834 (4) 0.38039 (8) 0.9209 (4) 0.0187 (4)
H13A −0.4302 0.3675 1.0208 0.022*
H13B −0.3340 0.3777 0.7366 0.022*
C14 −0.2356 (5) 0.43413 (8) 0.9899 (4) 0.0194 (5)
H14A −0.4000 0.4529 0.9587 0.023*
H14B −0.0995 0.4478 0.8793 0.023*
C15 −0.1453 (4) 0.43918 (8) 1.2721 (4) 0.0184 (4)
H15A −0.1048 0.4739 1.3106 0.022*
H15B −0.2888 0.4287 1.3832 0.022*
C16 0.0984 (4) 0.40803 (8) 1.3293 (4) 0.0205 (5)
H16A 0.1486 0.4106 1.5137 0.025*
H16B 0.2466 0.4206 1.2301 0.025*
C17 0.0493 (4) 0.35425 (8) 1.2602 (4) 0.0185 (5)
H17A 0.2123 0.3351 1.2934 0.022*
H17B −0.0897 0.3408 1.3682 0.022*
H1 0.603 (6) 0.2006 (11) 0.090 (6) 0.042 (8)*
H2 −0.240 (5) 0.2875 (10) 0.891 (5) 0.027 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0251 (8) 0.0167 (8) 0.0310 (9) −0.0030 (7) 0.0032 (7) −0.0044 (7)
O2 0.0158 (7) 0.0174 (8) 0.0214 (8) −0.0014 (6) 0.0052 (6) −0.0016 (6)
O3 0.0157 (7) 0.0193 (8) 0.0277 (9) −0.0012 (6) 0.0022 (6) −0.0038 (6)
N1 0.0182 (9) 0.0182 (9) 0.0167 (9) 0.0019 (7) 0.0070 (7) −0.0002 (7)
N2 0.0132 (9) 0.0159 (9) 0.0211 (10) −0.0008 (7) 0.0020 (7) −0.0023 (7)
C1 0.0225 (12) 0.0194 (11) 0.0303 (13) −0.0028 (10) 0.0008 (10) 0.0029 (9)
C2 0.0180 (11) 0.0165 (11) 0.0226 (11) 0.0014 (8) −0.0016 (9) −0.0004 (8)
C3 0.0249 (12) 0.0198 (11) 0.0171 (11) 0.0046 (9) −0.0033 (9) −0.0045 (9)
C4 0.0190 (10) 0.0210 (12) 0.0155 (10) 0.0043 (9) 0.0015 (8) −0.0021 (8)
C5 0.0169 (10) 0.0169 (10) 0.0137 (10) 0.0016 (8) 0.0016 (8) 0.0023 (8)
C6 0.0183 (10) 0.0175 (11) 0.0189 (10) 0.0013 (9) 0.0011 (8) 0.0005 (8)
C7 0.0133 (9) 0.0139 (10) 0.0168 (10) 0.0014 (8) 0.0012 (8) 0.0007 (8)
C8 0.0128 (10) 0.0176 (10) 0.0155 (10) 0.0027 (8) 0.0008 (8) 0.0006 (8)
C9 0.0160 (10) 0.0179 (11) 0.0171 (10) 0.0005 (9) 0.0017 (8) 0.0031 (8)
C10 0.0144 (10) 0.0138 (10) 0.0169 (10) 0.0016 (8) 0.0003 (8) 0.0007 (8)
C11 0.0163 (10) 0.0159 (11) 0.0141 (10) −0.0001 (8) 0.0025 (8) 0.0006 (8)
C12 0.0173 (10) 0.0137 (10) 0.0196 (11) 0.0004 (8) 0.0028 (9) −0.0011 (8)
C13 0.0197 (10) 0.0164 (10) 0.0200 (11) 0.0005 (9) 0.0019 (9) −0.0015 (8)
C14 0.0204 (11) 0.0154 (10) 0.0225 (11) 0.0022 (8) 0.0035 (9) 0.0023 (8)
C15 0.0199 (11) 0.0148 (10) 0.0209 (11) 0.0004 (8) 0.0053 (9) −0.0024 (8)
C16 0.0227 (11) 0.0195 (11) 0.0194 (11) 0.0010 (9) 0.0011 (9) −0.0013 (8)
C17 0.0199 (11) 0.0174 (11) 0.0182 (11) 0.0038 (9) 0.0001 (9) −0.0015 (8)

Geometric parameters (Å, °)

O1—C2 1.379 (3) C7—C10 1.431 (3)
O1—C1 1.427 (3) C7—C8 1.448 (3)
O2—C10 1.238 (2) C8—C9 1.403 (3)
O3—C11 1.237 (2) C9—H9 0.9500
N1—C6 1.344 (3) C10—C11 1.534 (3)
N1—C5 1.389 (3) C12—C17 1.526 (3)
N1—H1 0.96 (3) C12—C13 1.528 (3)
N2—C11 1.331 (3) C12—H12 1.0000
N2—C12 1.465 (3) C13—C14 1.530 (3)
N2—H2 0.88 (3) C13—H13A 0.9900
C1—H1A 0.9800 C13—H13B 0.9900
C1—H1B 0.9800 C14—C15 1.534 (3)
C1—H1C 0.9800 C14—H14A 0.9900
C2—C9 1.379 (3) C14—H14B 0.9900
C2—C3 1.409 (3) C15—C16 1.524 (3)
C3—C4 1.375 (3) C15—H15A 0.9900
C3—H3 0.9500 C15—H15B 0.9900
C4—C5 1.388 (3) C16—C17 1.532 (3)
C4—H4 0.9500 C16—H16A 0.9900
C5—C8 1.405 (3) C16—H16B 0.9900
C6—C7 1.399 (3) C17—H17A 0.9900
C6—H6 0.9500 C17—H17B 0.9900
C2—O1—C1 116.63 (17) O3—C11—N2 123.5 (2)
C6—N1—C5 109.37 (18) O3—C11—C10 121.94 (18)
C6—N1—H1 122.6 (18) N2—C11—C10 114.56 (18)
C5—N1—H1 128.1 (18) N2—C12—C17 112.11 (17)
C11—N2—C12 120.74 (17) N2—C12—C13 110.36 (18)
C11—N2—H2 119.9 (18) C17—C12—C13 110.58 (17)
C12—N2—H2 119.2 (18) N2—C12—H12 107.9
O1—C1—H1A 109.5 C17—C12—H12 107.9
O1—C1—H1B 109.5 C13—C12—H12 107.9
H1A—C1—H1B 109.5 C12—C13—C14 110.68 (18)
O1—C1—H1C 109.5 C12—C13—H13A 109.5
H1A—C1—H1C 109.5 C14—C13—H13A 109.5
H1B—C1—H1C 109.5 C12—C13—H13B 109.5
C9—C2—O1 124.05 (18) C14—C13—H13B 109.5
C9—C2—C3 121.8 (2) H13A—C13—H13B 108.1
O1—C2—C3 114.11 (19) C13—C14—C15 110.64 (18)
C4—C3—C2 121.0 (2) C13—C14—H14A 109.5
C4—C3—H3 119.5 C15—C14—H14A 109.5
C2—C3—H3 119.5 C13—C14—H14B 109.5
C3—C4—C5 117.46 (19) C15—C14—H14B 109.5
C3—C4—H4 121.3 H14A—C14—H14B 108.1
C5—C4—H4 121.3 C16—C15—C14 110.60 (18)
C4—C5—N1 129.47 (18) C16—C15—H15A 109.5
C4—C5—C8 122.22 (19) C14—C15—H15A 109.5
N1—C5—C8 108.29 (18) C16—C15—H15B 109.5
N1—C6—C7 109.98 (19) C14—C15—H15B 109.5
N1—C6—H6 125.0 H15A—C15—H15B 108.1
C7—C6—H6 125.0 C15—C16—C17 111.42 (19)
C6—C7—C10 127.11 (19) C15—C16—H16A 109.3
C6—C7—C8 106.15 (17) C17—C16—H16A 109.3
C10—C7—C8 126.63 (17) C15—C16—H16B 109.3
C9—C8—C5 119.91 (19) C17—C16—H16B 109.3
C9—C8—C7 133.89 (18) H16A—C16—H16B 108.0
C5—C8—C7 106.20 (18) C12—C17—C16 109.81 (17)
C2—C9—C8 117.55 (18) C12—C17—H17A 109.7
C2—C9—H9 121.2 C16—C17—H17A 109.7
C8—C9—H9 121.2 C12—C17—H17B 109.7
O2—C10—C7 123.40 (19) C16—C17—H17B 109.7
O2—C10—C11 118.42 (18) H17A—C17—H17B 108.2
C7—C10—C11 118.15 (17)
C1—O1—C2—C9 −1.3 (3) C5—C8—C9—C2 −0.7 (3)
C1—O1—C2—C3 177.67 (19) C7—C8—C9—C2 179.7 (2)
C9—C2—C3—C4 0.6 (3) C6—C7—C10—O2 174.9 (2)
O1—C2—C3—C4 −178.4 (2) C8—C7—C10—O2 −0.7 (3)
C2—C3—C4—C5 0.1 (3) C6—C7—C10—C11 −2.9 (3)
C3—C4—C5—N1 −179.4 (2) C8—C7—C10—C11 −178.55 (19)
C3—C4—C5—C8 −1.2 (3) C12—N2—C11—O3 4.1 (3)
C6—N1—C5—C4 178.7 (2) C12—N2—C11—C10 −175.09 (18)
C6—N1—C5—C8 0.3 (2) O2—C10—C11—O3 148.5 (2)
C5—N1—C6—C7 −0.2 (2) C7—C10—C11—O3 −33.6 (3)
N1—C6—C7—C10 −176.2 (2) O2—C10—C11—N2 −32.4 (3)
N1—C6—C7—C8 0.1 (2) C7—C10—C11—N2 145.54 (19)
C4—C5—C8—C9 1.5 (3) C11—N2—C12—C17 −85.5 (2)
N1—C5—C8—C9 −179.95 (19) C11—N2—C12—C13 150.80 (19)
C4—C5—C8—C7 −178.77 (19) N2—C12—C13—C14 −177.23 (17)
N1—C5—C8—C7 −0.2 (2) C17—C12—C13—C14 58.2 (2)
C6—C7—C8—C9 179.8 (2) C12—C13—C14—C15 −56.8 (2)
C10—C7—C8—C9 −3.9 (4) C13—C14—C15—C16 55.7 (2)
C6—C7—C8—C5 0.1 (2) C14—C15—C16—C17 −56.4 (2)
C10—C7—C8—C5 176.4 (2) N2—C12—C17—C16 178.52 (17)
O1—C2—C9—C8 178.57 (19) C13—C12—C17—C16 −57.9 (2)
C3—C2—C9—C8 −0.4 (3) C15—C16—C17—C12 57.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.96 (3) 1.90 (3) 2.840 (2) 164 (3)
N2—H2···O3ii 0.88 (3) 2.09 (3) 2.926 (3) 160 (3)

Symmetry codes: (i) x+1, y, z−1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5025).

References

  1. Bacher, G., Nickel, B., Emig, P., Vanhoefer, U., Seeber, S., Shandra, A., Klenner, T. & Becker, T. (2001). Cancer Res. 61, 392–399. [PubMed]
  2. Chai, H. F., Zhao, Y. F., Zhao, C. S. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917. [DOI] [PubMed]
  3. Feng, M., Zhao, M., Zhang, J., Yang, Z. & Chen, H. (2008). Acta Cryst. E64, o2339. [DOI] [PMC free article] [PubMed]
  4. Karthikeyan, S. V., Perumal, S., Shetty, K. A., Yogeeswari, P. & Sriram, D. (2009). Bioorg. Med. Chem. Lett. 19, 3006–3009. [DOI] [PubMed]
  5. Radwan, M. A. A., Ragab, E. A., Sabry, N. M. & El-Shenawy, S. M. (2007). Bioorg. Med. Chem. 15, 3832–3841. [DOI] [PubMed]
  6. Rigaku. (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sonar, V. N., Parkin, S. & Crooks, P. A. (2006). Acta Cryst. E62, o3744–o3746. [DOI] [PubMed]
  9. Souli, E., Machluf, M., Morgenstern, A., Sabo, E. & Yannai, S. (2008). Food Chem. Toxicol. 46, 863–870. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054656/cv5025sup1.cif

e-67-0o288-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054656/cv5025Isup2.hkl

e-67-0o288-Isup2.hkl (86.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES