Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 26;67(Pt 2):m257–m258. doi: 10.1107/S1600536811001449

Tris(ethane-1,2-diamine-κ2 N,N′)nickel(II) 5-hy­droxy­isophthalate monohydrate

Shu-Hong Wang a,b, Bin Zhang a,c, Cheng Wang b,*, Guo-Qiang Xu b, Yang Xie b
PMCID: PMC3051561  PMID: 21522910

Abstract

The asymmetric unit of the title compound, [Ni(C2H8N2)3](C8H4O5)·H2O, contains one [Ni(en)3]2+ cation (en is ethane-1,2-diamine), one 5-hy­droxy­isophthalate dianion and one water mol­ecule. In the cation, the Ni2+ ion is coordinated by six N atoms from three ethyl­enediamine ligands in a distorted octa­hedral geometry. The complex ions and water mol­ecules are linked by weak N—H⋯N/O and O—H⋯N/O hydrogen bonds into a three-demensional structure.

Related literature

For the construction of supra­molecular networks, see: Colacio et al. (2002); Guilera & Steed (1999); Roesky & Andruh (2003). For the structures of compounds with 5-hy­droxy­isophthalic acid, see: Braverman & LaDuca (2007); Feller & Cheetham (2009); Li et al. (2005); Shao et al. (2009); Wang et al. (2007); Xu & Li (2004).graphic file with name e-67-0m257-scheme1.jpg

Experimental

Crystal data

  • [Ni(C2H8N2)3](C8H4O5)·H2O

  • M r = 437.13

  • Monoclinic, Inline graphic

  • a = 8.208 (5) Å

  • b = 14.590 (5) Å

  • c = 16.581 (5) Å

  • β = 97.747 (5)°

  • V = 1967.5 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 293 K

  • 0.10 × 0.08 × 0.06 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.906, T max = 0.940

  • 8306 measured reflections

  • 3656 independent reflections

  • 2997 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.092

  • S = 1.00

  • 3656 reflections

  • 258 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001449/hy2388sup1.cif

e-67-0m257-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001449/hy2388Isup2.hkl

e-67-0m257-Isup2.hkl (179.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—N5 2.112 (2)
Ni1—N4 2.120 (2)
Ni1—N2 2.123 (2)
Ni1—N3 2.129 (2)
Ni1—N6 2.135 (2)
Ni1—N1 2.139 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H4⋯O2i 0.82 1.80 2.618 (2) 174
N5—H14⋯O4ii 0.90 2.09 2.958 (3) 161
N5—H13⋯O4iii 0.90 2.38 3.238 (3) 159
N5—H13⋯O3iii 0.90 2.50 3.266 (3) 143
N4—H19⋯O6iv 0.90 2.30 3.173 (3) 162
N4—H20⋯O3iii 0.90 2.11 2.924 (3) 150
N3—H31⋯O4ii 0.90 2.14 3.011 (3) 162
N3—H32⋯O2v 0.90 2.41 3.214 (3) 148
N2—H27⋯O6iv 0.90 2.27 3.097 (3) 152
N2—H28⋯O1v 0.90 2.34 3.190 (3) 157
N6—H16⋯O5vi 0.90 2.42 3.292 (3) 164
N6—H15⋯O1v 0.90 2.49 3.285 (3) 148
O6—H5⋯O1v 0.82 (2) 2.28 (2) 3.076 (4) 165 (3)
O6—H6⋯O1vi 0.83 (2) 1.94 (2) 2.749 (3) 167 (3)
N1—H26⋯O3iii 0.92 (2) 2.08 (2) 2.953 (3) 158 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The present study has been supported in part by the Abroad Person with Ability Foundation of Heilongjiang Province (Nos. 11551339, 2010td03), the NSFC (No. 20872030), the China Postdoctoral Foundation and the Elitist Foundation of Heilongjiang University (No. Hdtd2010-11).

supplementary crystallographic information

Comment

There has been considerable interest in the crystal engineering of supramolecular architectures organized and sustained by means of coordinate covalent supramolecular contacts (such as hydrogen bonds), aurophilicity interactions, and so on (Colacio et al., 2002; Roesky & Andruh, 2003; Guilera & Steed, 1999). As a multidentate ligand, 5-hydroxyisophthalic acid has two rigid carboxyl groups but also one exible hydroxyl group. Therefore, 5-hydroxyisophthalic acid has been widely reported as a good candidate not only in the construction of various coordination polymers but also in the construction of supramolecular networks (Braverman & LaDuca, 2007; Feller & Cheetham, 2009; Li et al., 2005; Shao et al., 2009; Wang et al., 2007; Xu & Li, 2004).

The molecular structure of the title compound is illustrated in Fig. 1, and selected geometric parameters are listed in Table 1. The asymmetric unit of the title compound, [Ni(C2H8N2)3] [C8H4O5]. H2O, contains one [Ni(en)3]2+ cation, one 5-hydroxyisophthalatedianion and one water molecules. In the title compound, the Ni2+ ion is coordinated by six N atoms from three ethylenediamine ligands in a distorted octahedral geometry. Note that a three-dimensional supramolecular hydrogen-bonding network is observed in the crystal structure of the title compound; details are given in Table 2.

Experimental

All chemicals were purchased from commercial sources and used without further purification. A mixture of nickel nitrate (Ni(NO3)2. 3H2O (0.5 mmol), 5-hydroxyisophthalic acid (0.5 mmol) and ethylenediamine (0.1 mL) were dissolved in methanol (20 mL). The reaction mixture was stirred for 2 h at 313 K. The filtrate was kept at room temperature and brown block like single crystals were obtained after 3 months.

Refinement

H atoms are treated by a mixture of independent and constrained refinement.

Figures

Fig. 1.

Fig. 1.

Molecular structure of [Ni(C2H8N2)3] [C8H4O5]. H2O, with the atom labeling, showing displacement at the 30% ellipsoids probability level.

Fig. 2.

Fig. 2.

View of three-dimensional supramolecule framework of [Ni(C2H8N2)3] [C8H4O5]. H2O, with hydrogen bonds indicated by dashed lines.

Crystal data

[Ni(C2H8N2)3](C8H4O5)·H2O F(000) = 928
Mr = 437.13 Dx = 1.476 Mg m3Dm = 1.476 Mg m3Dm measured by not measured
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 3656 reflections
a = 8.208 (5) Å θ = 2.0–51.0°
b = 14.590 (5) Å µ = 1.03 mm1
c = 16.581 (5) Å T = 293 K
β = 97.747 (5)° Block, brown
V = 1967.5 (15) Å3 0.10 × 0.08 × 0.06 mm
Z = 4

Data collection

Bruker APEX CCD area-detector diffractometer 3656 independent reflections
Radiation source: fine-focus sealed tube 2997 reflections with I > 2σ(I)
graphite Rint = 0.026
ω scans θmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→9
Tmin = 0.906, Tmax = 0.940 k = −16→17
8306 measured reflections l = −20→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.2444P] where P = (Fo2 + 2Fc2)/3
3656 reflections (Δ/σ)max = 0.004
258 parameters Δρmax = 0.45 e Å3
4 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.91637 (3) 0.259626 (17) 0.974252 (16) 0.02383 (11)
O5 0.4795 (2) 1.20853 (10) 0.77712 (10) 0.0387 (4)
H4 0.5319 1.2412 0.7497 0.058*
C4 1.2188 (3) 0.3041 (2) 1.08329 (16) 0.0453 (6)
H17 1.1993 0.3693 1.0888 0.054*
H18 1.3343 0.2922 1.1010 0.054*
C9 0.4722 (3) 0.96063 (13) 0.79873 (13) 0.0247 (5)
O2 0.3689 (2) 0.81120 (11) 0.81877 (12) 0.0564 (6)
O3 0.8221 (2) 0.88664 (12) 0.64932 (12) 0.0527 (5)
O4 0.8811 (2) 1.03211 (12) 0.62789 (11) 0.0469 (5)
N5 0.8745 (2) 0.40180 (13) 0.95883 (12) 0.0338 (4)
H14 0.8949 0.4308 1.0071 0.041*
H13 0.9411 0.4252 0.9251 0.041*
C13 0.5152 (3) 1.11865 (13) 0.76445 (13) 0.0263 (5)
C11 0.6694 (2) 0.99956 (13) 0.70870 (12) 0.0232 (4)
O1 0.3348 (3) 0.91643 (12) 0.90927 (12) 0.0614 (6)
N4 1.1751 (2) 0.27597 (14) 0.99752 (13) 0.0352 (5)
H19 1.2254 0.2228 0.9885 0.042*
H20 1.2080 0.3189 0.9642 0.042*
N3 0.9414 (3) 0.26683 (14) 1.10360 (12) 0.0369 (5)
H31 0.9101 0.3224 1.1193 0.044*
H32 0.8776 0.2242 1.1230 0.044*
C8 0.8013 (3) 0.97061 (15) 0.65782 (13) 0.0300 (5)
C10 0.5897 (3) 0.93413 (14) 0.74970 (13) 0.0254 (5)
H2 0.6146 0.8724 0.7446 0.030*
C12 0.6296 (3) 1.09163 (13) 0.71495 (12) 0.0248 (4)
H3 0.6800 1.1353 0.6858 0.030*
C14 0.4373 (3) 1.05317 (14) 0.80625 (13) 0.0283 (5)
H1 0.3609 1.0714 0.8397 0.034*
N2 0.9402 (2) 0.11470 (13) 0.97466 (11) 0.0359 (5)
H27 1.0404 0.0985 0.9995 0.043*
H28 0.8642 0.0894 1.0021 0.043*
N1 0.9271 (3) 0.24104 (13) 0.84709 (13) 0.0346 (5)
N6 0.6543 (3) 0.25611 (13) 0.96287 (14) 0.0384 (5)
H16 0.6125 0.2314 0.9148 0.046*
H15 0.6214 0.2221 1.0030 0.046*
C7 0.3851 (3) 0.89121 (15) 0.84474 (15) 0.0338 (5)
C1 0.9958 (3) 0.14870 (17) 0.83782 (15) 0.0386 (6)
H21 1.1139 0.1497 0.8540 0.046*
H24 0.9747 0.1298 0.7813 0.046*
C2 0.9176 (3) 0.08176 (16) 0.89022 (15) 0.0436 (6)
H22 0.8012 0.0761 0.8707 0.052*
H23 0.9679 0.0219 0.8875 0.052*
C5 0.5970 (3) 0.35214 (19) 0.96839 (17) 0.0465 (7)
H11 0.6052 0.3705 1.0250 0.056*
H10 0.4828 0.3569 0.9445 0.056*
C6 0.7013 (3) 0.41394 (18) 0.92398 (18) 0.0464 (7)
H12 0.6869 0.3987 0.8665 0.056*
H9 0.6686 0.4773 0.9296 0.056*
C3 1.1144 (3) 0.25055 (18) 1.13507 (16) 0.0436 (6)
H30 1.1393 0.1857 1.1327 0.052*
H29 1.1369 0.2704 1.1913 0.052*
O6 0.3136 (3) 0.07283 (15) 0.99974 (13) 0.0559 (5)
H5 0.399 (3) 0.074 (2) 1.0317 (17) 0.067*
H6 0.335 (4) 0.0285 (17) 0.9720 (17) 0.067*
H26 1.001 (3) 0.2840 (15) 0.8337 (15) 0.041 (7)*
H25 0.827 (3) 0.2482 (17) 0.8153 (16) 0.046 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.02321 (18) 0.02431 (16) 0.02524 (17) −0.00172 (10) 0.00789 (12) 0.00261 (10)
O5 0.0551 (11) 0.0185 (7) 0.0477 (10) 0.0084 (7) 0.0258 (9) 0.0027 (7)
C4 0.0298 (14) 0.0588 (17) 0.0457 (15) −0.0068 (12) −0.0003 (12) −0.0092 (13)
C9 0.0259 (11) 0.0224 (10) 0.0270 (11) −0.0007 (8) 0.0086 (9) −0.0007 (8)
O2 0.0734 (14) 0.0239 (9) 0.0829 (14) −0.0119 (8) 0.0509 (12) −0.0092 (9)
O3 0.0599 (12) 0.0319 (9) 0.0750 (13) 0.0058 (8) 0.0414 (11) −0.0119 (9)
O4 0.0528 (11) 0.0409 (10) 0.0549 (11) 0.0008 (8) 0.0363 (9) 0.0066 (8)
N5 0.0342 (11) 0.0324 (10) 0.0368 (11) −0.0025 (8) 0.0123 (9) 0.0024 (8)
C13 0.0324 (12) 0.0182 (10) 0.0293 (11) 0.0053 (8) 0.0079 (9) 0.0007 (8)
C11 0.0242 (11) 0.0236 (10) 0.0226 (10) 0.0003 (8) 0.0058 (9) −0.0014 (8)
O1 0.1002 (16) 0.0370 (10) 0.0593 (13) −0.0193 (10) 0.0558 (12) −0.0076 (8)
N4 0.0284 (11) 0.0381 (11) 0.0407 (12) −0.0017 (8) 0.0106 (9) 0.0031 (9)
N3 0.0388 (12) 0.0384 (11) 0.0358 (11) −0.0020 (9) 0.0136 (10) 0.0022 (8)
C8 0.0323 (12) 0.0306 (12) 0.0291 (12) 0.0021 (9) 0.0116 (10) −0.0044 (9)
C10 0.0318 (12) 0.0174 (10) 0.0280 (11) 0.0004 (8) 0.0075 (9) −0.0021 (8)
C12 0.0301 (11) 0.0200 (10) 0.0258 (11) −0.0008 (8) 0.0092 (9) 0.0030 (8)
C14 0.0308 (12) 0.0258 (11) 0.0314 (12) 0.0034 (9) 0.0154 (10) −0.0008 (9)
N2 0.0401 (12) 0.0328 (10) 0.0352 (11) −0.0043 (9) 0.0064 (9) 0.0054 (8)
N1 0.0383 (13) 0.0343 (11) 0.0322 (11) −0.0027 (9) 0.0086 (10) 0.0030 (8)
N6 0.0320 (12) 0.0428 (12) 0.0414 (12) −0.0073 (8) 0.0088 (10) 0.0039 (9)
C7 0.0383 (13) 0.0235 (11) 0.0427 (14) −0.0020 (9) 0.0174 (11) 0.0015 (9)
C1 0.0428 (14) 0.0403 (13) 0.0333 (13) 0.0041 (11) 0.0077 (11) −0.0063 (10)
C2 0.0599 (17) 0.0281 (12) 0.0408 (14) −0.0025 (11) −0.0001 (13) −0.0019 (10)
C5 0.0266 (13) 0.0508 (16) 0.0636 (18) 0.0047 (11) 0.0113 (13) 0.0016 (13)
C6 0.0364 (14) 0.0396 (14) 0.0620 (18) 0.0084 (11) 0.0016 (13) 0.0115 (12)
C3 0.0438 (16) 0.0565 (17) 0.0294 (13) 0.0077 (12) 0.0016 (12) −0.0015 (11)
O6 0.0534 (13) 0.0568 (13) 0.0561 (14) 0.0171 (10) 0.0023 (10) −0.0102 (10)

Geometric parameters (Å, °)

Ni1—N5 2.112 (2) N3—C3 1.464 (4)
Ni1—N4 2.120 (2) N3—H31 0.9000
Ni1—N2 2.123 (2) N3—H32 0.9000
Ni1—N3 2.129 (2) C10—H2 0.9300
Ni1—N6 2.135 (2) C12—H3 0.9300
Ni1—N1 2.139 (2) C14—H1 0.9300
O5—C13 1.366 (2) N2—C2 1.468 (3)
O5—H4 0.8200 N2—H27 0.9000
C4—N4 1.477 (3) N2—H28 0.9000
C4—C3 1.510 (4) N1—C1 1.476 (3)
C4—H17 0.9700 N1—H26 0.922 (17)
C4—H18 0.9700 N1—H25 0.922 (18)
C9—C14 1.389 (3) N6—C5 1.485 (3)
C9—C10 1.397 (3) N6—H16 0.9000
C9—C7 1.505 (3) N6—H15 0.9000
O2—C7 1.245 (3) C1—C2 1.507 (3)
O3—C8 1.248 (3) C1—H21 0.9700
O4—C8 1.252 (3) C1—H24 0.9700
N5—C6 1.472 (3) C2—H22 0.9700
N5—H14 0.9000 C2—H23 0.9700
N5—H13 0.9000 C5—C6 1.502 (4)
C13—C12 1.385 (3) C5—H11 0.9700
C13—C14 1.386 (3) C5—H10 0.9700
C11—C10 1.386 (3) C6—H12 0.9700
C11—C12 1.390 (3) C6—H9 0.9700
C11—C8 1.520 (3) C3—H30 0.9700
O1—C7 1.253 (3) C3—H29 0.9700
N4—H19 0.9000 O6—H5 0.818 (18)
N4—H20 0.9000 O6—H6 0.826 (17)
N5—Ni1—N4 93.10 (8) C11—C12—H3 119.9
N5—Ni1—N2 172.57 (8) C13—C14—C9 120.70 (18)
N4—Ni1—N2 91.25 (8) C13—C14—H1 119.6
N5—Ni1—N3 93.76 (8) C9—C14—H1 119.6
N4—Ni1—N3 81.53 (8) C2—N2—Ni1 108.85 (14)
N2—Ni1—N3 92.84 (7) C2—N2—H27 109.9
N5—Ni1—N6 82.39 (7) Ni1—N2—H27 109.9
N4—Ni1—N6 172.57 (8) C2—N2—H28 109.9
N2—Ni1—N6 93.89 (8) Ni1—N2—H28 109.9
N3—Ni1—N6 92.85 (8) H27—N2—H28 108.3
N5—Ni1—N1 91.88 (8) C1—N1—Ni1 106.58 (15)
N4—Ni1—N1 91.15 (8) C1—N1—H26 108.8 (17)
N2—Ni1—N1 82.00 (7) Ni1—N1—H26 105.5 (16)
N3—Ni1—N1 170.99 (8) C1—N1—H25 111.6 (16)
N6—Ni1—N1 94.87 (9) Ni1—N1—H25 113.4 (19)
C13—O5—H4 109.5 H26—N1—H25 111 (2)
N4—C4—C3 108.7 (2) C5—N6—Ni1 107.19 (14)
N4—C4—H17 109.9 C5—N6—H16 110.3
C3—C4—H17 109.9 Ni1—N6—H16 110.3
N4—C4—H18 109.9 C5—N6—H15 110.3
C3—C4—H18 109.9 Ni1—N6—H15 110.3
H17—C4—H18 108.3 H16—N6—H15 108.5
C14—C9—C10 119.18 (18) O2—C7—O1 122.6 (2)
C14—C9—C7 119.40 (18) O2—C7—C9 119.42 (19)
C10—C9—C7 121.40 (18) O1—C7—C9 118.0 (2)
C6—N5—Ni1 107.36 (14) N1—C1—C2 109.4 (2)
C6—N5—H14 110.2 N1—C1—H21 109.8
Ni1—N5—H14 110.2 C2—C1—H21 109.8
C6—N5—H13 110.2 N1—C1—H24 109.8
Ni1—N5—H13 110.2 C2—C1—H24 109.8
H14—N5—H13 108.5 H21—C1—H24 108.2
O5—C13—C12 122.75 (18) N2—C2—C1 109.18 (19)
O5—C13—C14 117.49 (18) N2—C2—H22 109.8
C12—C13—C14 119.70 (18) C1—C2—H22 109.8
C10—C11—C12 119.87 (18) N2—C2—H23 109.8
C10—C11—C8 119.97 (18) C1—C2—H23 109.8
C12—C11—C8 120.15 (18) H22—C2—H23 108.3
C4—N4—Ni1 108.26 (14) N6—C5—C6 109.3 (2)
C4—N4—H19 110.0 N6—C5—H11 109.8
Ni1—N4—H19 110.0 C6—C5—H11 109.8
C4—N4—H20 110.0 N6—C5—H10 109.8
Ni1—N4—H20 110.0 C6—C5—H10 109.8
H19—N4—H20 108.4 H11—C5—H10 108.3
C3—N3—Ni1 107.96 (15) N5—C6—C5 108.6 (2)
C3—N3—H31 110.1 N5—C6—H12 110.0
Ni1—N3—H31 110.1 C5—C6—H12 110.0
C3—N3—H32 110.1 N5—C6—H9 110.0
Ni1—N3—H32 110.1 C5—C6—H9 110.0
H31—N3—H32 108.4 H12—C6—H9 108.3
O3—C8—O4 124.9 (2) N3—C3—C4 108.1 (2)
O3—C8—C11 117.01 (19) N3—C3—H30 110.1
O4—C8—C11 118.07 (19) C4—C3—H30 110.1
C11—C10—C9 120.22 (18) N3—C3—H29 110.1
C11—C10—H2 119.9 C4—C3—H29 110.1
C9—C10—H2 119.9 H30—C3—H29 108.4
C13—C12—C11 120.28 (18) H5—O6—H6 99 (3)
C13—C12—H3 119.9
N4—Ni1—N5—C6 168.22 (16) C10—C9—C14—C13 1.4 (3)
N2—Ni1—N5—C6 42.5 (6) C7—C9—C14—C13 −179.8 (2)
N3—Ni1—N5—C6 −110.08 (16) N5—Ni1—N2—C2 23.7 (6)
N6—Ni1—N5—C6 −17.70 (16) N4—Ni1—N2—C2 −102.10 (16)
N1—Ni1—N5—C6 76.96 (16) N3—Ni1—N2—C2 176.32 (16)
C3—C4—N4—Ni1 40.3 (2) N6—Ni1—N2—C2 83.27 (16)
N5—Ni1—N4—C4 80.33 (17) N1—Ni1—N2—C2 −11.11 (16)
N2—Ni1—N4—C4 −105.70 (17) N5—Ni1—N1—C1 166.69 (16)
N3—Ni1—N4—C4 −13.01 (16) N4—Ni1—N1—C1 73.56 (16)
N6—Ni1—N4—C4 28.1 (7) N2—Ni1—N1—C1 −17.54 (16)
N1—Ni1—N4—C4 172.28 (17) N3—Ni1—N1—C1 38.0 (6)
N5—Ni1—N3—C3 −109.45 (16) N6—Ni1—N1—C1 −110.79 (16)
N4—Ni1—N3—C3 −16.88 (15) N5—Ni1—N6—C5 −11.55 (16)
N2—Ni1—N3—C3 73.96 (16) N4—Ni1—N6—C5 41.3 (7)
N6—Ni1—N3—C3 168.00 (16) N2—Ni1—N6—C5 174.91 (16)
N1—Ni1—N3—C3 19.1 (6) N3—Ni1—N6—C5 81.87 (17)
C10—C11—C8—O3 6.3 (3) N1—Ni1—N6—C5 −102.80 (17)
C12—C11—C8—O3 −174.4 (2) C14—C9—C7—O2 155.0 (2)
C10—C11—C8—O4 −173.5 (2) C10—C9—C7—O2 −26.2 (4)
C12—C11—C8—O4 5.8 (3) C14—C9—C7—O1 −26.6 (4)
C12—C11—C10—C9 −1.4 (3) C10—C9—C7—O1 152.2 (2)
C8—C11—C10—C9 177.87 (19) Ni1—N1—C1—C2 43.2 (2)
C14—C9—C10—C11 −0.5 (3) Ni1—N2—C2—C1 37.7 (2)
C7—C9—C10—C11 −179.3 (2) N1—C1—C2—N2 −55.4 (3)
O5—C13—C12—C11 175.5 (2) Ni1—N6—C5—C6 38.8 (2)
C14—C13—C12—C11 −1.6 (3) Ni1—N5—C6—C5 44.1 (2)
C10—C11—C12—C13 2.5 (3) N6—C5—C6—N5 −56.6 (3)
C8—C11—C12—C13 −176.8 (2) Ni1—N3—C3—C4 43.4 (2)
O5—C13—C14—C9 −177.6 (2) N4—C4—C3—N3 −56.7 (3)
C12—C13—C14—C9 −0.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H4···O2i 0.82 1.80 2.618 (2) 174
N5—H14···O4ii 0.90 2.09 2.958 (3) 161
N5—H13···O4iii 0.90 2.38 3.238 (3) 159
N5—H13···O3iii 0.90 2.50 3.266 (3) 143
N4—H19···O6iv 0.90 2.30 3.173 (3) 162
N4—H20···O3iii 0.90 2.11 2.924 (3) 150
N3—H31···O4ii 0.90 2.14 3.011 (3) 162
N3—H32···O2v 0.90 2.41 3.214 (3) 148
N2—H27···O6iv 0.90 2.27 3.097 (3) 152
N2—H28···O1v 0.90 2.34 3.190 (3) 157
N6—H16···O5vi 0.90 2.42 3.292 (3) 164
N6—H15···O1v 0.90 2.49 3.285 (3) 148
O6—H5···O1v 0.82 (2) 2.28 (2) 3.076 (4) 165 (3)
O6—H6···O1vi 0.83 (2) 1.94 (2) 2.749 (3) 167 (3)
N1—H26···O3iii 0.92 (2) 2.08 (2) 2.953 (3) 158 (2)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+3/2, z+1/2; (iii) −x+2, y−1/2, −z+3/2; (iv) x+1, y, z; (v) −x+1, −y+1, −z+2; (vi) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2388).

References

  1. Braverman, M. A. & LaDuca, R. L. (2007). Acta Cryst. E63, o3167.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Colacio, E., Lloret, F., Kivekäs, F., Ruiz, R. J., Suárez-Varela, J. & Sundberg, M. R. (2002). Chem. Commun. pp. 592–593. [DOI] [PubMed]
  4. Feller, R. K. & Cheetham, A. K. (2009). CrystEngComm, 11, 980–985.
  5. Guilera, G. & Steed, J. W. (1999). Chem. Commun. pp. 1563–1564.
  6. Li, X. J., Cao, R., Bi, W. H., Wang, Y. Q., Wang, Y. L. & Li, X. (2005). Polyhedron, 24, 2955–2962.
  7. Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119.
  8. Shao, K. Z., Zhao, Y. H., Wang, X. L., Lan, Y. Q., Wang, D. J., Su, Z. M. & Wang, R. S. (2009). Inorg. Chem. 48, 10–12. [DOI] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Wang, M.-H., Wu, J.-G. & Luan, G.-Y. (2007). Acta Cryst. E63, m1039–m1041.
  12. Xu, H. T. & Li, Y. D. (2004). J. Mol. Struct. 690, 137–143.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001449/hy2388sup1.cif

e-67-0m257-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001449/hy2388Isup2.hkl

e-67-0m257-Isup2.hkl (179.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES