Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 22;67(Pt 2):o440. doi: 10.1107/S160053681100167X

3-Hy­droxy-2-(4-meth­oxy­phen­yl)-4H-chromen-4-one

Michał Wera a, Ilia E Serdiuk b, Alexander D Roshal b, Jerzy Błażejowski a,*
PMCID: PMC3051573  PMID: 21523104

Abstract

In the title compound, C16H12O4, the benzene ring is twisted at an angle of 12.3 (1)° relative to the 4H-chromene skeleton, and an intramolecular O—H⋯O hydrogen bond occurs. The meth­oxy group is almost coplanar with the benzene ring [1.5 (1)°]. In the crystal, inversely oriented mol­ecules are arranged in double (A, A′) columns, along the b axis, and are linked by a network of inter­molecular O—H⋯O hydrogen bonds (between A and A′) and C—H⋯π contacts (within A or A′). The 4H-chromene cores are parallel within A or A′, but make a dihedral angle of 88.6 (1)° between A and A′.

Related literature

For general features of flavonols (derivatives of 3-hy­droxy-2-phenyl-4H-chromen-4-one), see: Demchenko (2009); Klymchenko et al. (2003); Sengupta & Kasha (1979). For related structures, see: Etter et al. (1986); Waller et al. (2003); Wera et al. (2011). For inter­molecular inter­actions, see: Aakeröy et al. (1992); Takahashi et al. (2001). For the synthesis, see: Sobottka et al. (2000).graphic file with name e-67-0o440-scheme1.jpg

Experimental

Crystal data

  • C16H12O4

  • M r = 268.26

  • Monoclinic, Inline graphic

  • a = 11.2400 (5) Å

  • b = 4.9860 (2) Å

  • c = 21.9907 (9) Å

  • β = 95.116 (4)°

  • V = 1227.51 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.87 mm−1

  • T = 295 K

  • 0.4 × 0.05 × 0.05 mm

Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.723, T max = 0.888

  • 7763 measured reflections

  • 2209 independent reflections

  • 1691 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.112

  • S = 1.04

  • 2209 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681100167X/om2398sup1.cif

e-67-0o440-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100167X/om2398Isup2.hkl

e-67-0o440-Isup2.hkl (108.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O12 0.91 (3) 2.17 (3) 2.672 (2) 114 (2)
O11—H11⋯O12i 0.91 (3) 1.92 (3) 2.748 (2) 149 (2)
C20—H20BCg1ii 0.96 2.87 3.710 (2) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant DS/8220–4–0087–11).

supplementary crystallographic information

Comment

3-Hydroxy-2-phenyl-4H-chromen-4-one (flavonol) and its derivatives exhibit dual fluorescence in liquids arising from Excited State Intramolecular Proton Transfer (ESIPT) (Sengupta & Kasha, 1979). Both ESIPT and the fluorescence of flavonols depend substantially on the structure of the compounds (the angle between 4H-chromene and benzene moieties (Klymchenko et al., 2003)) and the properties of the medium, which makes them convenient analytical probes in chemistry, biochemistry, biology and medicine (Demchenko, 2009). Here we present the crystal structure of a flavonol derivative – 3-hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one – a potential fluorescence sensor.

In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 4H-chromen-4-one moiety are similar to those in 2-phenyl-4H-chromen-4-one (flavone) (Waller et al., 2003) and 3-hydroxy-2-phenyl-4H-chromen-4-one (flavonol) (Etter et al., 1986). With respective average deviations from planarity of 0.0070 (2)° and 0.0055 (2)°, the 4H-chromene and benzene ring systems are oriented at a dihedral angle of 12.3 (1)° (in the case of flavonol this angle is equal to 5.5 (1)° (Etter et al., 1986), while 3-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one – 20.7 (1)° (Wera et al., 2011)). The methoxy group remains almost in the plane of the benzene ring: it is twisted relative to the benzene ring by an angle of only 1.5 (1)°.

In the crystal structure, the inversely oriented molecules are arranged in double (A,A') columns, along the b axis, and linked by a network of intermolecular O–H···O (Aakeröy et al., 1992) hydrogen bonds (between A and A') and C–H···π (Takahashi et al., 2001) contacts (within A or A') (Table 1, Figs. 2 and 3). The 4H-chromene cores are parallel within A or A', but lie at an angle of 88.6 (1)° between A and A'. The crystal lattice is stabilized by dispersive interactions between inversely oriented columns. The intramolecular O11–H11···O12 hydrogen bond (Table 1, Figs. 1–3) is believed to be involved in the ESIPT phenomenon, characteristic of flavonols (Sengupta & Kasha, 1979).

Experimental

The title compound was synthesized as a result of the oxidative heterocyclization of 1-(2-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one, synthesized first by the condensation of 1-(2-hydroxyphenyl)ethanone with 4-methoxybenzaldehyde in ethanol/50% aqueous NaOH (1/1 v/v), in alkaline ethanol/H2O2 (Sobottka et al., 2000). The filtered product was purified chromatographically (Silica Gel, chloroform/ethanol, 20/1 v/v) and colorless crystals suitable for X-ray investigations were grown from chloroform (m.p. = 510 – 511 K).

Refinement

H atoms of C–H bonds were positioned geometrically, with C–H = 0.93Å and 0.96Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C) where x = 1.2 for the aromatic H and 1.5 for methyl H atoms. H atoms involved in O–H···O hydrogen bonds were located on a difference Fourier map and refined isotropically with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. The O–H···O hydrogen bond is indicated by a dashed line.

Fig. 2.

Fig. 2.

The arrangement of the molecules in the crystal structure. The O–H···O hydrogen bonds are represented by dashed lines, the C–H···π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x, y – 1/2, –z + 1/2; (ii) x, y – 1, z.]

Fig. 3.

Fig. 3.

Columns in the crystal structure, viewed along the b axis. The O–H···O interactions are represented by dashed lines, the C–H···π contacts by dotted lines. H atoms not involved in interactions have been omitted. A and A' indicate the double columns.

Crystal data

C16H12O4 F(000) = 560
Mr = 268.26 Dx = 1.452 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 2209 reflections
a = 11.2400 (5) Å θ = 4.0–68.3°
b = 4.9860 (2) Å µ = 0.87 mm1
c = 21.9907 (9) Å T = 295 K
β = 95.116 (4)° Needle, colorless
V = 1227.51 (9) Å3 0.4 × 0.05 × 0.05 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer 2209 independent reflections
Radiation source: Ultra (Cu) X-ray Source' 1691 reflections with I > 2σ(I)
mirror Rint = 0.031
Detector resolution: 10.4002 pixels mm-1 θmax = 68.3°, θmin = 4.0°
ω scans h = −13→13
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −5→5
Tmin = 0.723, Tmax = 0.888 l = −25→26
7763 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.056P)2 + 0.2165P] where P = (Fo2 + 2Fc2)/3
2209 reflections (Δ/σ)max < 0.001
185 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.31792 (10) 0.8649 (2) 0.40435 (5) 0.0418 (3)
C2 0.22283 (14) 0.6906 (3) 0.40261 (7) 0.0360 (4)
C3 0.14034 (15) 0.6880 (3) 0.35333 (7) 0.0382 (4)
C4 0.15007 (15) 0.8610 (3) 0.30130 (7) 0.0387 (4)
C5 0.27235 (18) 1.2220 (4) 0.25831 (8) 0.0481 (5)
H5 0.2193 1.2302 0.2234 0.058*
C6 0.37020 (19) 1.3850 (4) 0.26374 (9) 0.0526 (5)
H6 0.3833 1.5046 0.2326 0.063*
C7 0.45087 (18) 1.3732 (4) 0.31592 (9) 0.0510 (5)
H7 0.5176 1.4843 0.3191 0.061*
C8 0.43220 (16) 1.1982 (4) 0.36261 (8) 0.0459 (4)
H8 0.4857 1.1900 0.3973 0.055*
C9 0.25145 (15) 1.0416 (3) 0.30532 (7) 0.0385 (4)
C10 0.33197 (15) 1.0345 (3) 0.35681 (7) 0.0391 (4)
O11 0.04691 (11) 0.5154 (3) 0.35012 (5) 0.0495 (3)
H11 0.012 (2) 0.521 (5) 0.3111 (11) 0.074*
O12 0.07565 (12) 0.8432 (3) 0.25643 (5) 0.0523 (4)
C13 0.22946 (15) 0.5200 (3) 0.45717 (7) 0.0366 (4)
C14 0.33350 (16) 0.5131 (4) 0.49652 (8) 0.0458 (4)
H14 0.3973 0.6231 0.4888 0.055*
C15 0.34395 (16) 0.3468 (4) 0.54671 (8) 0.0485 (5)
H15 0.4151 0.3426 0.5718 0.058*
C16 0.24935 (16) 0.1858 (4) 0.56016 (7) 0.0411 (4)
C17 0.14504 (16) 0.1926 (4) 0.52235 (8) 0.0494 (5)
H17 0.0806 0.0867 0.5311 0.059*
C18 0.13582 (16) 0.3565 (4) 0.47141 (8) 0.0479 (5)
H18 0.0651 0.3573 0.4460 0.057*
O19 0.26808 (12) 0.0309 (3) 0.61117 (5) 0.0532 (4)
C20 0.17391 (19) −0.1423 (4) 0.62537 (9) 0.0568 (5)
H20A 0.1990 −0.2448 0.6612 0.085*
H20B 0.1541 −0.2616 0.5917 0.085*
H20C 0.1051 −0.0374 0.6328 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0424 (6) 0.0461 (7) 0.0357 (6) −0.0079 (5) −0.0038 (5) 0.0054 (5)
C2 0.0354 (8) 0.0395 (9) 0.0327 (8) −0.0025 (7) 0.0005 (6) −0.0004 (7)
C3 0.0389 (9) 0.0418 (9) 0.0333 (8) −0.0001 (7) −0.0004 (7) −0.0013 (7)
C4 0.0432 (9) 0.0391 (9) 0.0332 (8) 0.0070 (7) −0.0005 (7) −0.0010 (7)
C5 0.0617 (12) 0.0450 (10) 0.0375 (9) 0.0048 (9) 0.0042 (8) 0.0035 (7)
C6 0.0662 (12) 0.0469 (11) 0.0465 (10) 0.0011 (9) 0.0142 (9) 0.0090 (8)
C7 0.0536 (11) 0.0467 (10) 0.0542 (11) −0.0053 (9) 0.0139 (9) 0.0017 (8)
C8 0.0460 (10) 0.0448 (10) 0.0467 (10) −0.0030 (8) 0.0037 (8) 0.0009 (8)
C9 0.0449 (9) 0.0361 (9) 0.0347 (8) 0.0063 (7) 0.0046 (7) −0.0004 (7)
C10 0.0456 (9) 0.0370 (9) 0.0352 (8) 0.0015 (7) 0.0059 (7) 0.0020 (7)
O11 0.0479 (7) 0.0638 (8) 0.0342 (6) −0.0158 (6) −0.0108 (5) 0.0056 (6)
O12 0.0593 (8) 0.0566 (8) 0.0376 (7) 0.0003 (6) −0.0140 (6) 0.0054 (6)
C13 0.0378 (8) 0.0407 (9) 0.0307 (8) −0.0016 (7) 0.0001 (6) −0.0009 (7)
C14 0.0400 (9) 0.0572 (11) 0.0391 (9) −0.0129 (8) −0.0032 (7) 0.0069 (8)
C15 0.0401 (9) 0.0629 (12) 0.0401 (9) −0.0094 (9) −0.0101 (7) 0.0102 (8)
C16 0.0475 (10) 0.0455 (9) 0.0296 (8) −0.0040 (8) −0.0013 (7) 0.0019 (7)
C17 0.0444 (10) 0.0587 (11) 0.0438 (10) −0.0160 (9) −0.0037 (8) 0.0076 (8)
C18 0.0387 (9) 0.0626 (12) 0.0401 (9) −0.0094 (9) −0.0093 (7) 0.0091 (8)
O19 0.0547 (8) 0.0630 (8) 0.0397 (7) −0.0141 (6) −0.0076 (6) 0.0156 (6)
C20 0.0661 (13) 0.0593 (12) 0.0447 (10) −0.0167 (10) 0.0025 (9) 0.0116 (9)

Geometric parameters (Å, °)

O1—C10 1.3645 (19) C9—C10 1.386 (2)
O1—C2 1.3755 (19) O11—H11 0.91 (3)
C2—C3 1.362 (2) C13—C18 1.389 (2)
C2—C13 1.467 (2) C13—C14 1.392 (2)
C3—O11 1.355 (2) C14—C15 1.377 (2)
C3—C4 1.445 (2) C14—H14 0.9300
C4—O12 1.238 (2) C15—C16 1.385 (2)
C4—C9 1.449 (2) C15—H15 0.9300
C5—C6 1.364 (3) C16—O19 1.363 (2)
C5—C9 1.406 (2) C16—C17 1.376 (2)
C5—H5 0.9300 C17—C18 1.383 (2)
C6—C7 1.399 (3) C17—H17 0.9300
C6—H6 0.9300 C18—H18 0.9300
C7—C8 1.378 (3) O19—C20 1.422 (2)
C7—H7 0.9300 C20—H20A 0.9600
C8—C10 1.388 (2) C20—H20B 0.9600
C8—H8 0.9300 C20—H20C 0.9600
C10—O1—C2 120.85 (13) C9—C10—C8 121.70 (16)
C3—C2—O1 120.02 (14) C3—O11—H11 107.3 (15)
C3—C2—C13 128.80 (15) C18—C13—C14 117.19 (15)
O1—C2—C13 111.15 (13) C18—C13—C2 122.71 (14)
O11—C3—C2 121.13 (15) C14—C13—C2 120.09 (15)
O11—C3—C4 116.80 (14) C15—C14—C13 121.33 (16)
C2—C3—C4 122.03 (15) C15—C14—H14 119.3
O12—C4—C3 119.67 (16) C13—C14—H14 119.3
O12—C4—C9 124.37 (15) C14—C15—C16 120.53 (16)
C3—C4—C9 115.93 (14) C14—C15—H15 119.7
C6—C5—C9 120.20 (17) C16—C15—H15 119.7
C6—C5—H5 119.9 O19—C16—C17 124.91 (16)
C9—C5—H5 119.9 O19—C16—C15 116.04 (15)
C5—C6—C7 120.35 (17) C17—C16—C15 119.04 (16)
C5—C6—H6 119.8 C16—C17—C18 120.16 (17)
C7—C6—H6 119.8 C16—C17—H17 119.9
C8—C7—C6 120.48 (18) C18—C17—H17 119.9
C8—C7—H7 119.8 C17—C18—C13 121.73 (16)
C6—C7—H7 119.8 C17—C18—H18 119.1
C7—C8—C10 118.72 (18) C13—C18—H18 119.1
C7—C8—H8 120.6 C16—O19—C20 117.48 (14)
C10—C8—H8 120.6 O19—C20—H20A 109.5
C10—C9—C5 118.54 (16) O19—C20—H20B 109.5
C10—C9—C4 119.12 (15) H20A—C20—H20B 109.5
C5—C9—C4 122.33 (16) O19—C20—H20C 109.5
O1—C10—C9 122.03 (15) H20A—C20—H20C 109.5
O1—C10—C8 116.27 (15) H20B—C20—H20C 109.5
C10—O1—C2—C3 −0.8 (2) C4—C9—C10—O1 −0.9 (2)
C10—O1—C2—C13 177.25 (14) C5—C9—C10—C8 −0.6 (3)
O1—C2—C3—O11 178.96 (15) C4—C9—C10—C8 178.47 (16)
C13—C2—C3—O11 1.3 (3) C7—C8—C10—O1 179.94 (15)
O1—C2—C3—C4 1.2 (2) C7—C8—C10—C9 0.5 (3)
C13—C2—C3—C4 −176.51 (16) C3—C2—C13—C18 −12.4 (3)
O11—C3—C4—O12 −1.0 (2) O1—C2—C13—C18 169.72 (15)
C2—C3—C4—O12 176.88 (16) C3—C2—C13—C14 166.24 (18)
O11—C3—C4—C9 −179.22 (14) O1—C2—C13—C14 −11.6 (2)
C2—C3—C4—C9 −1.4 (2) C18—C13—C14—C15 1.4 (3)
C9—C5—C6—C7 0.3 (3) C2—C13—C14—C15 −177.35 (17)
C5—C6—C7—C8 −0.4 (3) C13—C14—C15—C16 −1.6 (3)
C6—C7—C8—C10 0.0 (3) C14—C15—C16—O19 −179.23 (17)
C6—C5—C9—C10 0.1 (3) C14—C15—C16—C17 0.6 (3)
C6—C5—C9—C4 −178.88 (16) O19—C16—C17—C18 −179.65 (17)
O12—C4—C9—C10 −176.95 (16) C15—C16—C17—C18 0.6 (3)
C3—C4—C9—C10 1.2 (2) C16—C17—C18—C13 −0.7 (3)
O12—C4—C9—C5 2.0 (3) C14—C13—C18—C17 −0.2 (3)
C3—C4—C9—C5 −179.82 (16) C2—C13—C18—C17 178.47 (17)
C2—O1—C10—C9 0.7 (2) C17—C16—O19—C20 1.9 (3)
C2—O1—C10—C8 −178.72 (14) C15—C16—O19—C20 −178.31 (16)
C5—C9—C10—O1 −179.96 (15)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring.
D—H···A D—H H···A D···A D—H···A
O11—H11···O12 0.91 (3) 2.17 (3) 2.672 (2) 114 (2)
O11—H11···O12i 0.91 (3) 1.92 (3) 2.748 (2) 149 (2)
C20—H20B···Cg1ii 0.96 2.87 3.710 (2) 147

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2398).

References

  1. Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65.
  2. Demchenko, A. P. (2009). Introduction to Fluorescence Sensing The Netherlands: Springer Science and Business Media BV.
  3. Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155–167.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Klymchenko, A. S., Pivovarenko, V. G. & Demchenko, A. P. (2003). Spectrochim. Acta Part A, 59, 787–792. [DOI] [PubMed]
  6. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  7. Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382–385.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sobottka, A. M., Werner, W., Blaschke, G., Kiefer, W., Nowe, U., Dannhardt, G., Schapoval, E. E. S., Schenkel, E. P. & Scriba, G. K. E. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 205–210. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.
  12. Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767–o768.
  13. Wera, M., Pivovarenko, V. G. & Błażejowski, J. (2011). Acta Cryst. E67, o264–o265. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681100167X/om2398sup1.cif

e-67-0o440-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100167X/om2398Isup2.hkl

e-67-0o440-Isup2.hkl (108.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES