Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 29;67(Pt 2):o510. doi: 10.1107/S1600536811002479

1-(4-Chloro­phen­yl)-3-{5-[(E)-2-phenyl­ethen­yl]-1,3,4-thia­diazol-2-yl}urea

Xiu-Huan Zhan a, Zi-Yun Wang a,*
PMCID: PMC3051607  PMID: 21523161

Abstract

In the title compound, C17H13ClN4OS, the 1,3,4-thia­diazole ring makes dihedral angles of 9.70 (15) and 7.22 (10)° with the benzene and phenyl rings, respectively; the dihedral angle between these two rings is 6.37 (19)°. In the crystal, pairs of N—H⋯N and C—H⋯O hydrogen bonds between inversion-related mol­ecules result in supra­molecular ribbons displaying alternate R 2 2(8) and R 2 2(14) graph-set ring motifs.

Related literature

For the biological activity of urea derivatives, see: Abad et al. (2004); Chen et al. (2005); Yonova & Stoilkova (2005). For the biological activity of 1,3,4-thia­diazole derivatives, see: Guzeldemirci & Kucukbasmaci (2010); Song & Tan (2008); Zou et al. (2002). For the synthesis, see: Song et al. (2007).graphic file with name e-67-0o510-scheme1.jpg

Experimental

Crystal data

  • C17H13ClN4OS

  • M r = 356.82

  • Monoclinic, Inline graphic

  • a = 11.2399 (6) Å

  • b = 4.1032 (2) Å

  • c = 35.2497 (16) Å

  • β = 91.525 (4)°

  • V = 1625.12 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 298 K

  • 0.40 × 0.06 × 0.02 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 10860 measured reflections

  • 3708 independent reflections

  • 2081 reflections with I > 2σ(I)

  • R int = 0.091

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.154

  • S = 1.01

  • 3708 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811002479/is2664sup1.cif

e-67-0o510-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002479/is2664Isup2.hkl

e-67-0o510-Isup2.hkl (181.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.55 3.432 (4) 159
N2—H2A⋯N3ii 0.82 (4) 2.03 (4) 2.848 (4) 174 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Scientific Research Fund of Henan Provincial Education Department, China (grant Nos. 2007150050 and 2009B150030).

supplementary crystallographic information

Comment

Urea derivatives have attracted much attention on the account of their interesting biological effects, such as insecticidal, fungicidal, herbicidal and plant-growth regulating activities (Abad et al., 2004; Chen et al., 2005), especially cytokinin acyivity (Yonova & Stoilkova, 2005). 1,3,4-Thiadiazole derivatives are known to exhibit a wide range of biological activities (Zou et al., 2002; Song & Tan, 2008; Guzeldemirci & Kucukbasmaci, 2010). In view of our extensive interest and as a continuing search for new urea-type cytokinins, we investigate the urea derivatives incorporating a 1,3,4-thiadiazole nucleus, including the title compound.

The crystal structure (Fig.1) revealed that the title molecule which consists of three rings is approximately planar, the dihedral angles formed by the thiadiazole ring with the chlorophenyl and vinylphenyl rings being only 9.70 (15) and 7.22 (10)°, respectively, and the styryl moiety assumes a trans-configuration about C10═C11 double bond of the vinyl moiety. All bond lengths and angles are as expected. In the crystal structure, intermolecular N—H···N and C—H···O hydrogen bonds occurring between centrosymmetrically related molecules result in the formation of ribbons displaying alternate rings of graph-set motifs R22(8) and R22(14), as shown in Fig. 2 and Table 1.

Experimental

The title compound was prepared according to the procedure of Song et al. (2007). Suitable crystals were obtained by vapor diffusion of methanol in DMF at room temperature (m.p. >573 K). Elemental analysis: analysis calculated for C17H13ClN4OS: C 57.22, H 3.67, N 15.70%; found: C 57.45, H 3.56, N 15.82%.

Refinement

C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). N-bound H atoms were freely refined [refined distances 0.82 (4) and 0.86 (3) Å].

Figures

Fig. 1.

Fig. 1.

View of the title molecule, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Fig. 2.

Fig. 2.

A partial packing diagram of the title molecule. Hydrogen bonds are indicated by dashed lines.

Crystal data

C17H13ClN4OS F(000) = 736
Mr = 356.82 Dx = 1.458 Mg m3Dm = 1.459 Mg m3Dm measured by not measured
Monoclinic, P21/c Melting point > 573 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 11.2399 (6) Å Cell parameters from 1521 reflections
b = 4.1032 (2) Å θ = 2.9–23.2°
c = 35.2497 (16) Å µ = 0.38 mm1
β = 91.525 (4)° T = 298 K
V = 1625.12 (14) Å3 Block, colorless
Z = 4 0.40 × 0.06 × 0.02 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2081 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.091
graphite θmax = 27.5°, θmin = 1.8°
φ and ω scans h = −14→14
10860 measured reflections k = −5→5
3708 independent reflections l = −45→35

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0498P)2] where P = (Fo2 + 2Fc2)/3
3708 reflections (Δ/σ)max = 0.001
223 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9546 (3) −0.0487 (8) −0.10673 (10) 0.0517 (9)
C2 0.9869 (3) 0.0032 (9) −0.06905 (10) 0.0559 (10)
H2 1.0585 −0.0780 −0.0592 0.067*
C3 0.9118 (3) 0.1766 (8) −0.04629 (10) 0.0519 (9)
H3 0.9330 0.2130 −0.0210 0.062*
C4 0.8049 (3) 0.2972 (8) −0.06083 (10) 0.0440 (8)
C5 0.7739 (3) 0.2341 (9) −0.09865 (10) 0.0536 (9)
H5 0.7012 0.3078 −0.1085 0.064*
C6 0.8486 (3) 0.0657 (9) −0.12150 (10) 0.0565 (10)
H6 0.8277 0.0291 −0.1468 0.068*
C7 0.7271 (3) 0.5485 (8) −0.00213 (10) 0.0468 (8)
C8 0.6130 (3) 0.8377 (8) 0.04418 (10) 0.0458 (8)
C9 0.5972 (3) 0.9536 (8) 0.10951 (9) 0.0470 (8)
C10 0.6089 (3) 0.9901 (8) 0.15047 (10) 0.0499 (9)
H10 0.5513 1.1121 0.1626 0.060*
C11 0.6956 (3) 0.8619 (8) 0.17178 (10) 0.0491 (9)
H11 0.7501 0.7342 0.1591 0.059*
C12 0.7170 (3) 0.8949 (8) 0.21285 (10) 0.0505 (9)
C13 0.6371 (4) 1.0434 (9) 0.23675 (11) 0.0639 (10)
H13 0.5660 1.1267 0.2268 0.077*
C14 0.6625 (5) 1.0679 (11) 0.27489 (12) 0.0839 (13)
H14 0.6079 1.1654 0.2907 0.101*
C15 0.7677 (5) 0.9501 (11) 0.28999 (12) 0.0881 (15)
H15 0.7843 0.9683 0.3159 0.106*
C16 0.8480 (4) 0.8058 (11) 0.26689 (13) 0.0810 (13)
H16 0.9197 0.7273 0.2770 0.097*
C17 0.8222 (4) 0.7772 (9) 0.22848 (11) 0.0656 (11)
H17 0.8768 0.6767 0.2129 0.079*
Cl1 1.05145 (9) −0.2566 (3) −0.13606 (3) 0.0742 (4)
N1 0.7246 (2) 0.4851 (7) −0.04021 (8) 0.0500 (8)
H1A 0.670 (3) 0.583 (8) −0.0530 (9) 0.060*
N2 0.6343 (3) 0.7450 (8) 0.00788 (9) 0.0540 (8)
H2A 0.588 (3) 0.822 (8) −0.0081 (10) 0.065*
N3 0.5194 (2) 1.0175 (7) 0.05141 (8) 0.0548 (8)
N4 0.5103 (2) 1.0847 (7) 0.08984 (8) 0.0539 (8)
O1 0.7993 (2) 0.4425 (6) 0.02092 (6) 0.0620 (7)
S1 0.69949 (7) 0.7370 (2) 0.08328 (2) 0.0497 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.045 (2) 0.051 (2) 0.060 (2) −0.0060 (17) −0.0008 (18) 0.0119 (18)
C2 0.0382 (19) 0.064 (2) 0.065 (3) 0.0002 (18) −0.0084 (18) 0.019 (2)
C3 0.042 (2) 0.065 (2) 0.047 (2) −0.0022 (17) −0.0103 (16) 0.0139 (18)
C4 0.0360 (17) 0.046 (2) 0.050 (2) −0.0055 (15) −0.0075 (15) 0.0151 (17)
C5 0.043 (2) 0.064 (2) 0.052 (2) −0.0041 (18) −0.0138 (17) 0.012 (2)
C6 0.057 (2) 0.065 (2) 0.047 (2) −0.0064 (19) −0.0108 (19) 0.0081 (19)
C7 0.0388 (19) 0.051 (2) 0.050 (2) −0.0031 (16) −0.0126 (16) 0.0128 (18)
C8 0.0393 (19) 0.050 (2) 0.048 (2) −0.0026 (15) −0.0126 (15) 0.0128 (17)
C9 0.0367 (18) 0.052 (2) 0.052 (2) −0.0047 (15) −0.0042 (16) 0.0126 (17)
C10 0.0432 (19) 0.054 (2) 0.053 (2) −0.0010 (17) 0.0034 (17) 0.0024 (18)
C11 0.048 (2) 0.049 (2) 0.051 (2) −0.0004 (16) −0.0034 (17) 0.0044 (17)
C12 0.057 (2) 0.050 (2) 0.044 (2) −0.0060 (17) −0.0064 (18) 0.0063 (17)
C13 0.071 (3) 0.068 (3) 0.053 (3) 0.007 (2) −0.001 (2) 0.001 (2)
C14 0.120 (4) 0.074 (3) 0.059 (3) 0.007 (3) 0.012 (3) −0.009 (2)
C15 0.142 (5) 0.071 (3) 0.051 (3) −0.006 (3) −0.023 (3) −0.001 (2)
C16 0.099 (4) 0.076 (3) 0.066 (3) 0.003 (3) −0.025 (3) 0.003 (3)
C17 0.070 (3) 0.072 (3) 0.054 (2) 0.007 (2) −0.011 (2) 0.004 (2)
Cl1 0.0655 (7) 0.0789 (7) 0.0785 (8) 0.0047 (5) 0.0083 (5) 0.0018 (6)
N1 0.0393 (16) 0.060 (2) 0.0493 (19) 0.0041 (14) −0.0180 (14) 0.0090 (15)
N2 0.0420 (17) 0.070 (2) 0.049 (2) 0.0067 (15) −0.0162 (13) 0.0101 (17)
N3 0.0385 (16) 0.071 (2) 0.0543 (19) 0.0026 (15) −0.0145 (14) 0.0089 (16)
N4 0.0385 (16) 0.066 (2) 0.057 (2) −0.0004 (14) −0.0077 (14) 0.0098 (16)
O1 0.0511 (15) 0.0825 (18) 0.0513 (15) 0.0170 (13) −0.0186 (12) 0.0107 (14)
S1 0.0397 (5) 0.0609 (6) 0.0479 (5) 0.0024 (4) −0.0117 (4) 0.0111 (5)

Geometric parameters (Å, °)

C1—C6 1.370 (4) C9—S1 1.739 (3)
C1—C2 1.384 (5) C10—C11 1.324 (4)
C1—Cl1 1.744 (4) C10—H10 0.9300
C2—C3 1.378 (5) C11—C12 1.468 (4)
C2—H2 0.9300 C11—H11 0.9300
C3—C4 1.385 (4) C12—C17 1.379 (5)
C3—H3 0.9300 C12—C13 1.388 (5)
C4—C5 1.393 (5) C13—C14 1.370 (5)
C4—N1 1.404 (4) C13—H13 0.9300
C5—C6 1.366 (5) C14—C15 1.372 (6)
C5—H5 0.9300 C14—H14 0.9300
C6—H6 0.9300 C15—C16 1.366 (6)
C7—O1 1.214 (4) C15—H15 0.9300
C7—N1 1.367 (4) C16—C17 1.382 (5)
C7—N2 1.372 (4) C16—H16 0.9300
C8—N3 1.316 (4) C17—H17 0.9300
C8—N2 1.362 (4) N1—H1A 0.86 (3)
C8—S1 1.716 (3) N2—H2A 0.82 (4)
C9—N4 1.299 (4) N3—N4 1.389 (4)
C9—C10 1.454 (4)
C6—C1—C2 121.0 (3) C10—C11—C12 128.5 (3)
C6—C1—Cl1 119.5 (3) C10—C11—H11 115.8
C2—C1—Cl1 119.5 (3) C12—C11—H11 115.8
C3—C2—C1 119.3 (3) C17—C12—C13 118.2 (3)
C3—C2—H2 120.4 C17—C12—C11 118.6 (3)
C1—C2—H2 120.4 C13—C12—C11 123.2 (3)
C2—C3—C4 120.5 (3) C14—C13—C12 120.4 (4)
C2—C3—H3 119.7 C14—C13—H13 119.8
C4—C3—H3 119.7 C12—C13—H13 119.8
C3—C4—C5 118.7 (3) C13—C14—C15 120.6 (4)
C3—C4—N1 124.6 (3) C13—C14—H14 119.7
C5—C4—N1 116.8 (3) C15—C14—H14 119.7
C6—C5—C4 121.1 (3) C16—C15—C14 119.8 (4)
C6—C5—H5 119.4 C16—C15—H15 120.1
C4—C5—H5 119.4 C14—C15—H15 120.1
C5—C6—C1 119.4 (3) C15—C16—C17 119.7 (4)
C5—C6—H6 120.3 C15—C16—H16 120.1
C1—C6—H6 120.3 C17—C16—H16 120.1
O1—C7—N1 125.8 (3) C12—C17—C16 121.1 (4)
O1—C7—N2 122.6 (3) C12—C17—H17 119.4
N1—C7—N2 111.6 (3) C16—C17—H17 119.4
N3—C8—N2 120.0 (3) C7—N1—C4 128.1 (3)
N3—C8—S1 114.7 (3) C7—N1—H1A 115 (2)
N2—C8—S1 125.3 (3) C4—N1—H1A 117 (2)
N4—C9—C10 122.3 (3) C8—N2—C7 124.0 (3)
N4—C9—S1 115.2 (3) C8—N2—H2A 114 (2)
C10—C9—S1 122.5 (2) C7—N2—H2A 122 (2)
C11—C10—C9 124.6 (3) C8—N3—N4 112.3 (3)
C11—C10—H10 117.7 C9—N4—N3 111.4 (3)
C9—C10—H10 117.7 C8—S1—C9 86.31 (17)
C6—C1—C2—C3 −0.9 (5) C13—C12—C17—C16 −0.1 (6)
Cl1—C1—C2—C3 177.9 (2) C11—C12—C17—C16 179.0 (3)
C1—C2—C3—C4 0.2 (5) C15—C16—C17—C12 0.7 (6)
C2—C3—C4—C5 1.2 (5) O1—C7—N1—C4 −2.2 (6)
C2—C3—C4—N1 −177.8 (3) N2—C7—N1—C4 179.4 (3)
C3—C4—C5—C6 −2.0 (5) C3—C4—N1—C7 −9.2 (5)
N1—C4—C5—C6 177.1 (3) C5—C4—N1—C7 171.7 (3)
C4—C5—C6—C1 1.4 (5) N3—C8—N2—C7 −177.6 (3)
C2—C1—C6—C5 0.1 (5) S1—C8—N2—C7 2.0 (5)
Cl1—C1—C6—C5 −178.7 (3) O1—C7—N2—C8 −0.7 (5)
N4—C9—C10—C11 −179.9 (3) N1—C7—N2—C8 177.8 (3)
S1—C9—C10—C11 −0.9 (5) N2—C8—N3—N4 179.0 (3)
C9—C10—C11—C12 177.6 (3) S1—C8—N3—N4 −0.6 (4)
C10—C11—C12—C17 −171.1 (3) C10—C9—N4—N3 179.5 (3)
C10—C11—C12—C13 7.9 (6) S1—C9—N4—N3 0.4 (4)
C17—C12—C13—C14 −0.7 (6) C8—N3—N4—C9 0.1 (4)
C11—C12—C13—C14 −179.7 (4) N3—C8—S1—C9 0.7 (3)
C12—C13—C14—C15 0.8 (7) N2—C8—S1—C9 −178.9 (3)
C13—C14—C15—C16 −0.2 (7) N4—C9—S1—C8 −0.6 (3)
C14—C15—C16—C17 −0.5 (7) C10—C9—S1—C8 −179.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.93 2.55 3.432 (4) 159
N2—H2A···N3ii 0.82 (4) 2.03 (4) 2.848 (4) 174 (3)

Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2664).

References

  1. Abad, A., Agullo, C., Cunat, A. C., Jimenez, R. & Vilanova, C. (2004). J. Agric. Food Chem. 52, 4675–4683. [DOI] [PubMed]
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, L., Wang, Q. M., Huang, R. Q., Mao, C. H., Shang, J. & Bi, F. C. (2005). J. Agric. Food Chem. 53, 38–41. [DOI] [PubMed]
  4. Guzeldemirci, N. U. & Kucukbasmaci, O. (2010). Eur. J. Med. Chem. 45, 63–68. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Song, X. J. & Tan, X. H. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1955–1965.
  7. Song, X. J., Tan, X. H. & Wang, Y. G. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 1907–1913.
  8. Yonova, P. A. & Stoilkova, G. M. (2005). J. Plant Growth Regul. 23, 280–291.
  9. Zou, X. J., Lai, L. H., Jin, G. Y. & Zhang, Z. X. (2002). J. Agric. Food Chem. 50, 3757–3760. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811002479/is2664sup1.cif

e-67-0o510-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002479/is2664Isup2.hkl

e-67-0o510-Isup2.hkl (181.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES