Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 12;67(Pt 2):o349. doi: 10.1107/S1600536810054036

Methyl 3-(4-fluoro­phen­yl)-1-methyl-1,2,3,3a,4,9b-hexa­hydro­chromeno[4,3-b]pyrrole-3a-carboxyl­ate

G Chitra Devi a, Sundari Bhaskaran a, G Usha a,*, G Murugan b, M Bakthadoss b
PMCID: PMC3051613  PMID: 21523030

Abstract

In the title compound, C20H20FNO3, the pyrrolidine and benzopyran rings adopt half chair and twisted half chair conformations, respectively. The carboxyl­ate group is almost perpendicular to the pyran ring [89.4 (1)°].

Related literature

Chromanone derivatives are used as inter­mediates in the synthesis of natural products calonlide (A) and inophyllum (B) (Ellis et al., 1977), which have been suggested to have activity against anti-human immuno deficiency virus type 1 (HIV-1) (Hussain & Amir, 1986). Chromanone derivatives dilate the heart and act as remedies for angina pectoris, see: Hasegnaida (1967). Pyrrolidine derivatives possess anti-influenza (Stylianakis et al., 2003) and anti-convulsant (Obniska et al., 2002) activity. For related structures, see: Abdul Ajees et al. (2002); Usha et al. (2003). For asymmetry parameters, see: Nardelli (1983). graphic file with name e-67-0o349-scheme1.jpg

Experimental

Crystal data

  • C20H20FNO3

  • M r = 341.37

  • Monoclinic, Inline graphic

  • a = 10.4519 (4) Å

  • b = 20.6778 (8) Å

  • c = 7.8508 (3) Å

  • β = 91.535 (2)°

  • V = 1696.12 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.19 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • 16737 measured reflections

  • 4237 independent reflections

  • 2844 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.219

  • S = 0.81

  • 4237 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97(Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054036/bx2338sup1.cif

e-67-0o349-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054036/bx2338Isup2.hkl

e-67-0o349-Isup2.hkl (203.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computing facilities.

supplementary crystallographic information

Comment

Chromanone derivatives are used as a varsatile intermediate in the synthesis of natural products calonlide(A) and inophyllum(B), (Ellis et al., 1977) which have been suggested to have activity against anti-human immuno deficiency virus type1 (HIV-1) (Hussain et al., 1986). Chromanone derivatives dilate the heart and act as remedies for angina pectoris (Hasegnaida, 1967). Spiropyrrolidine derivatives are often used in the synthesis of biologically active compounds. Spiro ring system is also very interesting from a biogenetic point of view. Synthetic pyrrolidine derivatives have activity against the aldose reductase enzyme, which controls influenza. Pyrrolidine derivatives possess anti-influenza (Stylianakis et al., 2003) and anti- convulsant (Obniska et al., 2002) activity. We report here the crystal structure of the title compound, Fig.1. The C—C, N—C, C—O bond lengths in the structure are close to those found in the related structures (Usha et al., 2003; Abdul Ajees et al., 2002). The sum of the angle around atom N (332°) indicates sp3 hybridization. The carboxylate group is perpendicular to the pyran ring [89.4 (1)°].The pyran ring adopts twist-half chair conformation with lowest asymmetry parameters (Nardelli, 1983) of Δ (C9—C5) =0.033 (1) and the pyrrole ring adopts half chair conformation Δs(C8) = 0.008 (1). The molecular conformation is stabilizaed by two weak C—H···N and C—H···O intramolecular interactions, Table 1. The crystal packing is stabilized by van der Waals forces.

Experimental

A mixture of (E)-methyl2-((2-formylphenoxy) methyl)-3-(4-fluorophenyl)acrylate(2 mmol) and sarcosine (2 mmol) in acetonitrile (8 ml) was refluxed for 5h. After the completion of the reaction mixture was concentrated and the resulting crude mass was diluted with water (15 ml). The combined organic layer was washed with brine (2x10ml) and dried over anhydrous Na2SO4.The organic layer was concentrated and purified by column chromatographyon silica gel (Acme 100–200 mesh), using ethyl acetate-hexanes (1:9) to afford the pure title of the compound as a colourless solid in 65% yield.

Refinement

The H atoms were positioned geometrically and were treated as riding on their parent C atoms, with aromatic C—H = 0.93Å , methyl C-H = 0.96Å and methylene C—H = 0.97Å and with Uiso = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for the remaining H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C20H20FNO3 F(000) = 720
Mr = 341.37 Dx = 1.337 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4237 reflections
a = 10.4519 (4) Å θ = 2–28°
b = 20.6778 (8) Å µ = 0.10 mm1
c = 7.8508 (3) Å T = 293 K
β = 91.535 (2)° Block, colourless
V = 1696.12 (11) Å3 0.22 × 0.20 × 0.19 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2844 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.035
graphite θmax = 28.4°, θmin = 2.0°
ω and φ scan h = −13→13
16737 measured reflections k = −27→27
4237 independent reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.219 w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3
S = 0.81 (Δ/σ)max < 0.001
4237 reflections Δρmax = 0.24 e Å3
227 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.013 (4)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C20 0.1861 (2) 0.22098 (11) 0.9717 (3) 0.0645 (6)
H20A 0.1703 0.2651 0.9389 0.097*
H20B 0.2338 0.2201 1.0780 0.097*
H20C 0.1060 0.1990 0.9845 0.097*
O1 0.53935 (13) 0.05675 (7) 0.87998 (17) 0.0559 (4)
F −0.01102 (13) −0.15643 (6) 0.7317 (2) 0.0775 (5)
C1 0.63732 (18) 0.20543 (10) 0.6667 (2) 0.0505 (5)
H1 0.6080 0.2352 0.5858 0.061*
C2 0.7536 (2) 0.21569 (12) 0.7493 (3) 0.0655 (6)
H2 0.8025 0.2518 0.7236 0.079*
C3 0.7969 (2) 0.17199 (14) 0.8701 (3) 0.0737 (7)
H3 0.8757 0.1785 0.9253 0.088*
C4 0.7248 (2) 0.11893 (12) 0.9099 (3) 0.0640 (6)
H4 0.7545 0.0898 0.9922 0.077*
C5 0.60721 (17) 0.10867 (9) 0.8271 (2) 0.0458 (4)
C6 0.42920 (17) 0.03806 (8) 0.7786 (2) 0.0422 (4)
H6A 0.3763 0.0094 0.8447 0.051*
H6B 0.4569 0.0143 0.6796 0.051*
C7 0.35015 (15) 0.09573 (8) 0.72016 (18) 0.0357 (4)
C8 0.43498 (15) 0.14033 (8) 0.61491 (19) 0.0359 (4)
H8 0.3916 0.1818 0.5955 0.043*
C9 0.56300 (16) 0.15160 (8) 0.7018 (2) 0.0398 (4)
C10 0.24295 (16) 0.07657 (8) 0.58563 (19) 0.0383 (4)
H10 0.1776 0.1105 0.5884 0.046*
C11 0.30986 (18) 0.08318 (10) 0.4144 (2) 0.0485 (5)
H11A 0.3104 0.0420 0.3554 0.058*
H11B 0.2657 0.1146 0.3425 0.058*
C12 0.17597 (15) 0.01306 (8) 0.62225 (18) 0.0373 (4)
C13 0.06850 (16) 0.01298 (9) 0.7231 (2) 0.0440 (4)
H13 0.0382 0.0520 0.7649 0.053*
C14 0.00570 (18) −0.04361 (10) 0.7628 (2) 0.0515 (5)
H14 −0.0650 −0.0433 0.8323 0.062*
C15 0.05039 (18) −0.09990 (9) 0.6970 (2) 0.0503 (5)
C16 0.1548 (2) −0.10261 (9) 0.5965 (3) 0.0540 (5)
H16 0.1828 −0.1418 0.5532 0.065*
C17 0.21785 (17) −0.04557 (9) 0.5604 (2) 0.0475 (4)
H17 0.2898 −0.0467 0.4932 0.057*
C18 0.49406 (18) 0.14114 (10) 0.3144 (2) 0.0501 (5)
H18A 0.4949 0.1146 0.2141 0.075*
H18B 0.5799 0.1542 0.3444 0.075*
H18C 0.4424 0.1788 0.2925 0.075*
C19 0.28728 (16) 0.12722 (8) 0.87041 (19) 0.0397 (4)
N 0.44108 (14) 0.10458 (7) 0.45389 (16) 0.0395 (4)
O2 0.25895 (16) 0.09942 (7) 0.99746 (16) 0.0637 (5)
O3 0.25839 (14) 0.18923 (6) 0.84246 (17) 0.0556 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C20 0.0666 (14) 0.0625 (13) 0.0655 (13) 0.0059 (10) 0.0216 (11) −0.0122 (10)
O1 0.0514 (8) 0.0618 (8) 0.0535 (8) −0.0039 (6) −0.0194 (6) 0.0170 (6)
F 0.0686 (9) 0.0619 (8) 0.1021 (11) −0.0257 (6) 0.0022 (8) 0.0114 (7)
C1 0.0503 (10) 0.0546 (11) 0.0470 (10) −0.0087 (8) 0.0096 (8) −0.0091 (8)
C2 0.0541 (12) 0.0807 (15) 0.0623 (13) −0.0264 (11) 0.0128 (10) −0.0206 (11)
C3 0.0476 (12) 0.111 (2) 0.0623 (14) −0.0190 (13) −0.0064 (10) −0.0203 (13)
C4 0.0501 (12) 0.0916 (17) 0.0497 (11) −0.0018 (11) −0.0114 (9) −0.0022 (10)
C5 0.0411 (9) 0.0571 (11) 0.0391 (9) 0.0006 (8) −0.0026 (7) −0.0023 (7)
C6 0.0451 (9) 0.0424 (9) 0.0387 (8) −0.0015 (7) −0.0065 (7) 0.0064 (6)
C7 0.0374 (8) 0.0414 (9) 0.0281 (7) −0.0010 (6) −0.0008 (6) 0.0035 (6)
C8 0.0375 (8) 0.0386 (8) 0.0316 (7) 0.0014 (6) 0.0028 (6) 0.0048 (6)
C9 0.0382 (9) 0.0447 (10) 0.0364 (8) −0.0022 (7) 0.0028 (7) −0.0052 (6)
C10 0.0396 (8) 0.0442 (9) 0.0309 (8) −0.0015 (7) −0.0031 (6) 0.0040 (6)
C11 0.0512 (10) 0.0646 (12) 0.0294 (8) −0.0137 (9) −0.0015 (7) 0.0043 (7)
C12 0.0343 (8) 0.0473 (10) 0.0300 (7) −0.0023 (7) −0.0021 (6) 0.0005 (6)
C13 0.0386 (9) 0.0537 (11) 0.0398 (9) −0.0001 (7) 0.0023 (7) −0.0068 (7)
C14 0.0385 (9) 0.0679 (13) 0.0481 (10) −0.0096 (8) 0.0047 (8) −0.0005 (8)
C15 0.0448 (10) 0.0505 (11) 0.0554 (11) −0.0122 (8) −0.0055 (8) 0.0064 (8)
C16 0.0533 (11) 0.0453 (11) 0.0632 (12) 0.0009 (8) −0.0009 (9) −0.0061 (8)
C17 0.0401 (9) 0.0540 (11) 0.0486 (10) 0.0000 (8) 0.0077 (7) −0.0046 (8)
C18 0.0481 (10) 0.0679 (12) 0.0345 (8) −0.0039 (9) 0.0060 (7) 0.0094 (8)
C19 0.0403 (9) 0.0481 (10) 0.0305 (8) −0.0058 (7) −0.0014 (6) 0.0015 (7)
N 0.0420 (8) 0.0486 (8) 0.0280 (6) −0.0016 (6) 0.0018 (5) 0.0029 (5)
O2 0.0889 (12) 0.0667 (10) 0.0364 (7) 0.0026 (7) 0.0172 (7) 0.0078 (6)
O3 0.0688 (9) 0.0489 (8) 0.0502 (7) 0.0061 (6) 0.0222 (6) 0.0000 (6)

Geometric parameters (Å, °)

C20—O3 1.440 (2) C8—C9 1.504 (2)
C20—H20A 0.9600 C8—H8 0.9800
C20—H20B 0.9600 C10—C12 1.519 (2)
C20—H20C 0.9600 C10—C11 1.538 (2)
O1—C5 1.358 (2) C10—H10 0.9800
O1—C6 1.435 (2) C11—N 1.466 (2)
F—C15 1.364 (2) C11—H11A 0.9700
C1—C2 1.379 (3) C11—H11B 0.9700
C1—C9 1.389 (2) C12—C17 1.382 (3)
C1—H1 0.9300 C12—C13 1.392 (2)
C2—C3 1.378 (4) C13—C14 1.381 (3)
C2—H2 0.9300 C13—H13 0.9300
C3—C4 1.371 (4) C14—C15 1.361 (3)
C3—H3 0.9300 C14—H14 0.9300
C4—C5 1.391 (3) C15—C16 1.365 (3)
C4—H4 0.9300 C16—C17 1.384 (3)
C5—C9 1.395 (3) C16—H16 0.9300
C6—C7 1.515 (2) C17—H17 0.9300
C6—H6A 0.9700 C18—N 1.453 (2)
C6—H6B 0.9700 C18—H18A 0.9600
C7—C19 1.513 (2) C18—H18B 0.9600
C7—C8 1.536 (2) C18—H18C 0.9600
C7—C10 1.570 (2) C19—O2 1.1953 (19)
C8—N 1.467 (2) C19—O3 1.334 (2)
O3—C20—H20A 109.5 C12—C10—C11 117.71 (14)
O3—C20—H20B 109.5 C12—C10—C7 114.52 (12)
H20A—C20—H20B 109.5 C11—C10—C7 103.45 (12)
O3—C20—H20C 109.5 C12—C10—H10 106.8
H20A—C20—H20C 109.5 C11—C10—H10 106.8
H20B—C20—H20C 109.5 C7—C10—H10 106.8
C5—O1—C6 117.45 (13) N—C11—C10 106.67 (12)
C2—C1—C9 121.4 (2) N—C11—H11A 110.4
C2—C1—H1 119.3 C10—C11—H11A 110.4
C9—C1—H1 119.3 N—C11—H11B 110.4
C3—C2—C1 119.4 (2) C10—C11—H11B 110.4
C3—C2—H2 120.3 H11A—C11—H11B 108.6
C1—C2—H2 120.3 C17—C12—C13 117.85 (16)
C2—C3—C4 120.6 (2) C17—C12—C10 122.69 (15)
C2—C3—H3 119.7 C13—C12—C10 119.46 (15)
C4—C3—H3 119.7 C14—C13—C12 121.66 (17)
C3—C4—C5 119.9 (2) C14—C13—H13 119.2
C3—C4—H4 120.0 C12—C13—H13 119.2
C5—C4—H4 120.0 C15—C14—C13 117.96 (16)
O1—C5—C4 116.08 (17) C15—C14—H14 121.0
O1—C5—C9 123.58 (16) C13—C14—H14 121.0
C4—C5—C9 120.30 (18) C14—C15—C16 122.85 (17)
O1—C6—C7 112.27 (14) C14—C15—F 119.26 (17)
O1—C6—H6A 109.1 C16—C15—F 117.89 (17)
C7—C6—H6A 109.1 C15—C16—C17 118.42 (17)
O1—C6—H6B 109.1 C15—C16—H16 120.8
C7—C6—H6B 109.1 C17—C16—H16 120.8
H6A—C6—H6B 107.9 C12—C17—C16 121.23 (17)
C19—C7—C6 110.33 (13) C12—C17—H17 119.4
C19—C7—C8 115.48 (13) C16—C17—H17 119.4
C6—C7—C8 108.52 (13) N—C18—H18A 109.5
C19—C7—C10 108.43 (13) N—C18—H18B 109.5
C6—C7—C10 112.26 (13) H18A—C18—H18B 109.5
C8—C7—C10 101.62 (12) N—C18—H18C 109.5
N—C8—C9 114.21 (13) H18A—C18—H18C 109.5
N—C8—C7 101.54 (12) H18B—C18—H18C 109.5
C9—C8—C7 111.63 (13) O2—C19—O3 122.65 (16)
N—C8—H8 109.7 O2—C19—C7 124.48 (17)
C9—C8—H8 109.7 O3—C19—C7 112.74 (13)
C7—C8—H8 109.7 C18—N—C8 114.43 (14)
C1—C9—C5 118.24 (16) C18—N—C11 111.78 (13)
C1—C9—C8 122.01 (16) C8—N—C11 105.79 (13)
C5—C9—C8 119.69 (15) C19—O3—C20 116.29 (15)
C9—C1—C2—C3 −0.5 (3) C8—C7—C10—C11 26.42 (16)
C1—C2—C3—C4 −0.6 (4) C12—C10—C11—N −127.87 (15)
C2—C3—C4—C5 0.4 (4) C7—C10—C11—N −0.45 (18)
C6—O1—C5—C4 −169.32 (16) C11—C10—C12—C17 31.4 (2)
C6—O1—C5—C9 12.9 (3) C7—C10—C12—C17 −90.51 (19)
C3—C4—C5—O1 −176.91 (19) C11—C10—C12—C13 −149.15 (15)
C3—C4—C5—C9 1.0 (3) C7—C10—C12—C13 88.96 (18)
C5—O1—C6—C7 −42.6 (2) C17—C12—C13—C14 0.8 (2)
O1—C6—C7—C19 −68.27 (17) C10—C12—C13—C14 −178.74 (15)
O1—C6—C7—C8 59.16 (17) C12—C13—C14—C15 −1.4 (3)
O1—C6—C7—C10 170.67 (13) C13—C14—C15—C16 0.9 (3)
C19—C7—C8—N −160.23 (13) C13—C14—C15—F −178.91 (17)
C6—C7—C8—N 75.34 (14) C14—C15—C16—C17 0.1 (3)
C10—C7—C8—N −43.13 (15) F—C15—C16—C17 179.98 (17)
C19—C7—C8—C9 77.68 (16) C13—C12—C17—C16 0.4 (3)
C6—C7—C8—C9 −46.75 (17) C10—C12—C17—C16 179.85 (16)
C10—C7—C8—C9 −165.22 (13) C15—C16—C17—C12 −0.8 (3)
C2—C1—C9—C5 1.8 (3) C6—C7—C19—O2 −28.0 (2)
C2—C1—C9—C8 178.95 (16) C8—C7—C19—O2 −151.46 (17)
O1—C5—C9—C1 175.64 (16) C10—C7—C19—O2 95.34 (19)
C4—C5—C9—C1 −2.1 (3) C6—C7—C19—O3 156.20 (14)
O1—C5—C9—C8 −1.5 (3) C8—C7—C19—O3 32.72 (18)
C4—C5—C9—C8 −179.23 (16) C10—C7—C19—O3 −80.49 (16)
N—C8—C9—C1 88.40 (19) C9—C8—N—C18 −71.69 (18)
C7—C8—C9—C1 −157.13 (15) C7—C8—N—C18 168.03 (13)
N—C8—C9—C5 −94.54 (18) C9—C8—N—C11 164.82 (14)
C7—C8—C9—C5 19.9 (2) C7—C8—N—C11 44.53 (15)
C19—C7—C10—C12 −82.09 (17) C10—C11—N—C18 −152.67 (15)
C6—C7—C10—C12 40.05 (19) C10—C11—N—C8 −27.52 (18)
C8—C7—C10—C12 155.80 (13) O2—C19—O3—C20 −2.3 (3)
C19—C7—C10—C11 148.52 (14) C7—C19—O3—C20 173.64 (16)
C6—C7—C10—C11 −89.33 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6B···N 0.97 2.58 2.902 (2) 100
C8—H8···O3 0.98 2.42 2.792 (2) 102

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2338).

References

  1. Abdul Ajees, A., Manikandan, S. & Raghunathan, R. (2002). Acta Cryst. E58, o802–o804.
  2. Bruker (2004). APEX2 and SAINT BrukerAXS Inc., Madison,Wisconsin, USA.
  3. Ellis, G. P., Lockhart, I. M., Meeder-Nyez, D. & Schweizer, E. E. (1977). Chromenes, Chromanones and Chromones, edited by G. P. Ellis. New York: John Wiley and Sons, Inc.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Hasegnaida, G. (1967). Chem. Abst. 69, 67221.
  6. Hussain, M. I. & Amir, M. (1986). J. Indian Chem. Soc. 63, 317–320.
  7. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  8. Obniska, J., Zeic, A. & Zagorska, A. (2002). Acta Pol. Pharm. 59, 209–213. [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stylianakis, I., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & Declereq, E. (2003). Bioorg. Med. Chem. Lett. 10, 1699–1703. [DOI] [PubMed]
  12. Usha, G., Selvanayagam, S., Yogavel, M., Velmurugan, D., Amalraj, A., Raghunathan, R., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o1572–o1574.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054036/bx2338sup1.cif

e-67-0o349-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054036/bx2338Isup2.hkl

e-67-0o349-Isup2.hkl (203.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES