Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):m172. doi: 10.1107/S1600536811001012

Aqua­[bis­(2-ethyl-5-methyl-1H-imidazol-4-yl-κN 3)methane]­oxalatocopper(II) dihydrate

Yang-Hui Luo a,*, Xiao-Min Qian a, Ge Gao a, Jin-Feng Li a, Shu-Lin Mao a
PMCID: PMC3051616  PMID: 21522849

Abstract

In the title compound, [Cu(C2O4)(C13H20N4)(H2O)]·2H2O, the CuII atom exhibits a distorted square-pyramidal geometry with the two N atoms of the imidazole ligand and the two O atoms of the oxalate ligand forming the basal plane, while the O atom of the coordinated water mol­ecule is in an apical position. The CuII atom is shifted 0.232 (2) Å out of the basal plane toward the water mol­ecule. The asymmetric unit is completed by two solvent water mol­ecules. These water mol­ecules participate in the formation of an intricate three-dimensionnal network of hydrogen bonds involving the coordinated water mol­ecule and the NH groups.

Related literature

For the chemical properties of imidazole derivatives, see: Bouwman et al. (2000). For synthesis, see: Delgado et al. (2008). For related structures, see: Beznischenko et al. (2007); Pajunen (1981). graphic file with name e-67-0m172-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2O4)(C13H20N4)(H2O)]·2H2O

  • M r = 437.94

  • Monoclinic, Inline graphic

  • a = 12.1711 (13) Å

  • b = 23.167 (2) Å

  • c = 7.4400 (8) Å

  • β = 107.304 (1)°

  • V = 2002.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 298 K

  • 0.35 × 0.18 × 0.12 mm

Data collection

  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.693, T max = 0.876

  • 10119 measured reflections

  • 3528 independent reflections

  • 1958 reflections with I > 2σ(I)

  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.092

  • S = 0.81

  • 3528 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001012/dn2649sup1.cif

e-67-0m172-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001012/dn2649Isup2.hkl

e-67-0m172-Isup2.hkl (173KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O4i 0.85 2.58 3.177 (4) 128
O5—H52⋯O4ii 0.85 1.90 2.748 (4) 174
N2—H2⋯O2iii 0.86 2.09 2.943 (4) 171
N4—H4⋯O7 0.86 2.03 2.847 (4) 158
O6—H6F⋯O5iv 0.85 2.50 3.259 (4) 149
O6—H6G⋯O4v 0.85 2.30 3.057 (5) 148
O7—H7C⋯O3vi 0.85 2.03 2.882 (4) 178
O7—H7D⋯O6 0.85 1.97 2.818 (4) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

supplementary crystallographic information

Comment

Imidazole derivatives are versatile ligands towards transition metal ions both in man-made and natural systems. They are not only used for catalytic and biocatalysts but also for dioxygen transport and electron storage (Bouwman et al., 2000). As part of our interest in imidazole derivatives, we report here the crystal structure of a new copper complex.

The structure around CuII is best decribed as distorted square pyramid environnement with the two N atoms of the imidazole ligand and the two O atoms of the oxalate forming the basal plane whereas the oxygen atom of the coordinated water molecule is in apical position. As expected, the copper atom is shifted ca 0.232 (2)Å out of the basal plane toward the water molecule. The asymmetric unit is completed by two solvate water molecules. The distances and angles within the square pyramid framework agree with related structures (Beznischenko et al., 2007); Pajunen, 1981).

These water molecules participate to the formation of an intricated hydrogen bonds resulting in three dimensionnal network involving the coordinated water molecule and the NH groups (Table 1, Fig. 2).

Experimental

Crystals of the title compound were synthesized by the reaction between copper(II) nitrate trihydrate, potassium oxalate and 4,4'-methanediylbis(2-ethyl-5-methyl-1H-imidazole) ligand. Copper salt and oxalate chemicals used (reagent grade) were commercially available, the 4,4'-methanediylbis(2-ethyl-5-methyl-1H-imidazole) ligand was synthesized as described below . 0.2 mmol(48.4 mg) solid copper(II) nitrate trihydrate was added to a 15 ml aqueous solution of 0.1 mmol(16.6 mg) potassium oxalate under continuous stirring. The suspension was heated at 40–50 °C during 1 h. Then this suspension was mixed with a 5 ml EtOH solution of 0.1 mmol(23.2mg)4,4'-methanediylbis(2-ethyl-5-methyl-1H-imidazole). Finally, the blue solution which results from the mixture was filtered off and allowed to evaporate at room temperature(Delgado, et al.,2008). Single crystals of the title compound as blue prisms were grown from the solution by slow evaporation at room temperature within a few days.

The ligand 4,4'-methanediylbis(2-ethyl-5-methyl-1H-imidazole) was synthesized as follows: 4.35 g (30 mmol) 2-ethyl-5-methylimidazole was added to a solution of 1.5 g (15 mmol)glycine (40% in H2O). This suspension was vigorously stirred, and 3.1 g (30 mmol) formaldehyde (37% in H2O) was added dropwise. The resulting turbid mixture was made alkaline with a concentrated sodium hydroxide solution until a pH of 12 was reached(Bouwman, et al.,2000). The reaction mixture was stirred for 8 days at room temperature in a closed vessel. During which time a white solid formed. The white solid was collected by filtration, washed with acetonitrile and diethyl ether, and air-dry at room temperature.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.97 Å (methylene) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N) or Uiso(H) = 1.5Ueq(methyl) . H atoms of water molecules were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.40 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement, they were treated as riding on their parent O atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

A packing view down the a axis showing the three dimensionnal network. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.

Crystal data

[Cu(C2O4)(C13H20N4)(H2O)]·2H2O F(000) = 916
Mr = 437.94 Dx = 1.452 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1383 reflections
a = 12.1711 (13) Å θ = 3.0–26.0°
b = 23.167 (2) Å µ = 1.13 mm1
c = 7.4400 (8) Å T = 298 K
β = 107.304 (1)° Prism, blue
V = 2002.9 (4) Å3 0.35 × 0.18 × 0.12 mm
Z = 4

Data collection

Rigaku MODEL? CCD area-detector diffractometer 3528 independent reflections
Radiation source: fine-focus sealed tube 1958 reflections with I > 2σ(I)
graphite Rint = 0.071
Detector resolution: 8.192 pixels mm-1 θmax = 25.0°, θmin = 2.5°
φ and ω scans h = −14→14
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −27→21
Tmin = 0.693, Tmax = 0.876 l = −8→8
10119 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0336P)2] where P = (Fo2 + 2Fc2)/3
3528 reflections (Δ/σ)max = 0.003
248 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.76270 (4) 0.413233 (19) 0.51168 (7) 0.03980 (17)
O1 0.7228 (2) 0.49415 (10) 0.4554 (4) 0.0521 (8)
O2 0.7628 (2) 0.56946 (12) 0.2999 (4) 0.0607 (9)
O3 0.8807 (2) 0.43059 (12) 0.3849 (4) 0.0489 (8)
O4 0.9308 (3) 0.50045 (13) 0.2201 (5) 0.0744 (11)
O5 0.8745 (2) 0.44573 (12) 0.8111 (4) 0.0598 (8)
H51 0.8928 0.4356 0.9259 0.090*
H52 0.9316 0.4637 0.7948 0.090*
N1 0.6093 (2) 0.39498 (13) 0.5450 (4) 0.0350 (8)
N2 0.4439 (3) 0.39461 (14) 0.6014 (5) 0.0454 (9)
H2 0.3882 0.4056 0.6423 0.055*
N3 0.8036 (3) 0.33050 (12) 0.5306 (5) 0.0392 (8)
N4 0.8869 (3) 0.24674 (13) 0.5968 (5) 0.0435 (9)
H4 0.9396 0.2212 0.6395 0.052*
C1 0.5428 (3) 0.42338 (16) 0.6240 (5) 0.0355 (10)
C2 0.4464 (3) 0.34484 (17) 0.5008 (6) 0.0455 (11)
C3 0.5486 (3) 0.34484 (16) 0.4666 (6) 0.0365 (10)
C4 0.5695 (3) 0.47801 (16) 0.7361 (6) 0.0441 (11)
H4A 0.6252 0.5000 0.6946 0.053*
H4B 0.4998 0.5009 0.7111 0.053*
C5 0.6159 (4) 0.46803 (18) 0.9430 (7) 0.0665 (14)
H5A 0.6874 0.4474 0.9698 0.100*
H5B 0.5617 0.4458 0.9850 0.100*
H5C 0.6284 0.5045 1.0073 0.100*
C6 0.3461 (3) 0.30308 (19) 0.4455 (7) 0.0729 (16)
H6A 0.3218 0.2942 0.5538 0.109*
H6B 0.3696 0.2683 0.3973 0.109*
H6C 0.2835 0.3203 0.3503 0.109*
C7 0.9028 (3) 0.30417 (17) 0.6091 (6) 0.0403 (10)
C8 0.7732 (4) 0.23503 (16) 0.5055 (6) 0.0417 (11)
C9 0.7212 (3) 0.28746 (16) 0.4628 (6) 0.0385 (10)
C10 1.0158 (3) 0.33196 (18) 0.7043 (7) 0.0669 (15)
H10A 1.0293 0.3614 0.6207 0.080*
H10B 1.0092 0.3514 0.8161 0.080*
C11 1.1157 (4) 0.2954 (2) 0.7594 (10) 0.116 (3)
H11A 1.1282 0.2785 0.6494 0.173*
H11B 1.1038 0.2654 0.8408 0.173*
H11C 1.1816 0.3180 0.8248 0.173*
C12 0.7272 (3) 0.17517 (16) 0.4687 (6) 0.0559 (13)
H12A 0.6454 0.1766 0.4111 0.084*
H12B 0.7438 0.1544 0.5854 0.084*
H12C 0.7626 0.1560 0.3860 0.084*
C13 0.5996 (3) 0.30202 (16) 0.3626 (6) 0.0450 (11)
H13A 0.5540 0.2669 0.3434 0.054*
H13B 0.5952 0.3176 0.2398 0.054*
C14 0.7802 (3) 0.51976 (19) 0.3595 (6) 0.0420 (11)
C15 0.8731 (4) 0.48180 (19) 0.3153 (6) 0.0465 (11)
O6 1.1845 (3) 0.07904 (14) 0.6127 (5) 0.0904 (11)
H6F 1.1814 0.0493 0.6779 0.136*
H6G 1.1552 0.0701 0.4975 0.136*
O7 1.0089 (3) 0.14122 (14) 0.7024 (6) 0.1067 (15)
H7C 0.9722 0.1194 0.7563 0.160*
H7D 1.0608 0.1214 0.6762 0.160*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0386 (3) 0.0339 (3) 0.0511 (3) 0.0007 (2) 0.0197 (3) 0.0014 (3)
O1 0.0566 (19) 0.0352 (17) 0.078 (2) 0.0074 (13) 0.0411 (18) 0.0105 (15)
O2 0.066 (2) 0.041 (2) 0.084 (3) 0.0000 (15) 0.0355 (19) 0.0150 (17)
O3 0.0421 (17) 0.046 (2) 0.066 (2) 0.0043 (13) 0.0285 (16) 0.0026 (15)
O4 0.079 (2) 0.064 (2) 0.105 (3) −0.0064 (17) 0.067 (2) 0.012 (2)
O5 0.0454 (18) 0.084 (2) 0.051 (2) −0.0148 (15) 0.0156 (16) −0.0019 (16)
N1 0.0313 (18) 0.037 (2) 0.039 (2) 0.0026 (14) 0.0142 (17) 0.0010 (15)
N2 0.033 (2) 0.047 (2) 0.060 (3) 0.0009 (16) 0.0204 (18) 0.0009 (18)
N3 0.036 (2) 0.033 (2) 0.050 (2) 0.0015 (16) 0.0155 (18) 0.0029 (16)
N4 0.044 (2) 0.035 (2) 0.055 (3) 0.0080 (16) 0.0182 (19) 0.0012 (17)
C1 0.035 (2) 0.033 (3) 0.038 (3) 0.0006 (19) 0.009 (2) 0.0045 (19)
C2 0.039 (3) 0.041 (3) 0.055 (3) −0.002 (2) 0.012 (2) −0.006 (2)
C3 0.029 (2) 0.040 (3) 0.037 (3) −0.0010 (18) 0.006 (2) −0.0020 (19)
C4 0.045 (3) 0.035 (3) 0.057 (3) 0.0029 (19) 0.022 (2) 0.000 (2)
C5 0.070 (3) 0.065 (3) 0.061 (4) 0.013 (3) 0.014 (3) −0.006 (3)
C6 0.046 (3) 0.068 (4) 0.109 (5) −0.016 (2) 0.032 (3) −0.021 (3)
C7 0.040 (3) 0.031 (3) 0.052 (3) 0.003 (2) 0.017 (2) 0.000 (2)
C8 0.057 (3) 0.034 (2) 0.043 (3) −0.002 (2) 0.028 (2) −0.007 (2)
C9 0.040 (3) 0.040 (3) 0.038 (3) −0.002 (2) 0.015 (2) −0.008 (2)
C10 0.042 (3) 0.052 (3) 0.100 (5) 0.003 (2) 0.011 (3) −0.001 (3)
C11 0.051 (4) 0.068 (4) 0.205 (8) 0.010 (3) 0.004 (4) 0.008 (4)
C12 0.065 (3) 0.038 (3) 0.073 (4) −0.005 (2) 0.034 (3) −0.011 (2)
C13 0.044 (3) 0.042 (3) 0.050 (3) −0.003 (2) 0.016 (2) −0.010 (2)
C14 0.040 (3) 0.042 (3) 0.042 (3) −0.007 (2) 0.011 (2) 0.003 (2)
C15 0.043 (3) 0.046 (3) 0.053 (3) −0.009 (2) 0.017 (2) −0.001 (2)
O6 0.086 (3) 0.076 (3) 0.114 (3) 0.0166 (19) 0.038 (2) −0.001 (2)
O7 0.119 (3) 0.070 (2) 0.167 (4) 0.045 (2) 0.098 (3) 0.062 (2)

Geometric parameters (Å, °)

Cu1—O1 1.951 (2) C4—H4B 0.9700
Cu1—N3 1.975 (3) C5—H5A 0.9600
Cu1—O3 1.980 (3) C5—H5B 0.9600
Cu1—N1 2.000 (3) C5—H5C 0.9600
Cu1—O5 2.362 (3) C6—H6A 0.9600
O1—C14 1.283 (4) C6—H6B 0.9600
O2—C14 1.230 (4) C6—H6C 0.9600
O3—C15 1.287 (4) C7—C10 1.493 (5)
O4—C15 1.216 (4) C8—C9 1.363 (5)
O5—H51 0.8489 C8—C12 1.490 (5)
O5—H52 0.8497 C9—C13 1.485 (5)
N1—C1 1.311 (4) C10—C11 1.437 (5)
N1—C3 1.407 (4) C10—H10A 0.9700
N2—C1 1.342 (4) C10—H10B 0.9700
N2—C2 1.380 (5) C11—H11A 0.9600
N2—H2 0.8599 C11—H11B 0.9600
N3—C7 1.323 (4) C11—H11C 0.9600
N3—C9 1.398 (4) C12—H12A 0.9600
N4—C7 1.344 (4) C12—H12B 0.9600
N4—C8 1.375 (5) C12—H12C 0.9600
N4—H4 0.8603 C13—H13A 0.9700
C1—C4 1.497 (5) C13—H13B 0.9700
C2—C3 1.341 (5) C14—C15 1.543 (5)
C2—C6 1.515 (5) O6—H6F 0.8505
C3—C13 1.501 (5) O6—H6G 0.8503
C4—C5 1.491 (6) O7—H7C 0.8504
C4—H4A 0.9700 O7—H7D 0.8495
O1—Cu1—N3 171.72 (13) C2—C6—H6A 109.5
O1—Cu1—O3 82.66 (11) C2—C6—H6B 109.5
N3—Cu1—O3 91.60 (12) H6A—C6—H6B 109.5
O1—Cu1—N1 92.73 (11) C2—C6—H6C 109.5
N3—Cu1—N1 90.62 (12) H6A—C6—H6C 109.5
O3—Cu1—N1 159.73 (12) H6B—C6—H6C 109.5
O1—Cu1—O5 86.16 (11) N3—C7—N4 109.4 (3)
N3—Cu1—O5 100.35 (12) N3—C7—C10 127.0 (4)
O3—Cu1—O5 95.07 (11) N4—C7—C10 123.6 (4)
N1—Cu1—O5 104.34 (11) C9—C8—N4 105.6 (3)
C14—O1—Cu1 114.9 (3) C9—C8—C12 131.6 (4)
C15—O3—Cu1 113.8 (2) N4—C8—C12 122.9 (4)
Cu1—O5—H51 140.0 C8—C9—N3 108.5 (3)
Cu1—O5—H52 106.7 C8—C9—C13 130.1 (4)
H51—O5—H52 107.4 N3—C9—C13 121.4 (3)
C1—N1—C3 106.3 (3) C11—C10—C7 117.6 (4)
C1—N1—Cu1 132.3 (3) C11—C10—H10A 107.9
C3—N1—Cu1 121.2 (2) C7—C10—H10A 107.9
C1—N2—C2 108.6 (3) C11—C10—H10B 107.9
C1—N2—H2 125.5 C7—C10—H10B 107.9
C2—N2—H2 125.8 H10A—C10—H10B 107.2
C7—N3—C9 107.0 (3) C10—C11—H11A 109.5
C7—N3—Cu1 131.0 (3) C10—C11—H11B 109.5
C9—N3—Cu1 121.9 (3) H11A—C11—H11B 109.5
C7—N4—C8 109.4 (3) C10—C11—H11C 109.5
C7—N4—H4 125.3 H11A—C11—H11C 109.5
C8—N4—H4 125.2 H11B—C11—H11C 109.5
N1—C1—N2 110.2 (3) C8—C12—H12A 109.5
N1—C1—C4 127.8 (3) C8—C12—H12B 109.5
N2—C1—C4 121.9 (3) H12A—C12—H12B 109.5
C3—C2—N2 105.9 (3) C8—C12—H12C 109.5
C3—C2—C6 131.7 (4) H12A—C12—H12C 109.5
N2—C2—C6 122.3 (3) H12B—C12—H12C 109.5
C2—C3—N1 108.9 (3) C9—C13—C3 113.3 (3)
C2—C3—C13 130.3 (4) C9—C13—H13A 108.9
N1—C3—C13 120.8 (3) C3—C13—H13A 108.9
C5—C4—C1 113.4 (3) C9—C13—H13B 108.9
C5—C4—H4A 108.9 C3—C13—H13B 108.9
C1—C4—H4A 108.9 H13A—C13—H13B 107.7
C5—C4—H4B 108.9 O2—C14—O1 124.7 (4)
C1—C4—H4B 108.9 O2—C14—C15 121.0 (4)
H4A—C4—H4B 107.7 O1—C14—C15 114.2 (4)
C4—C5—H5A 109.5 O4—C15—O3 125.3 (4)
C4—C5—H5B 109.5 O4—C15—C14 120.6 (4)
H5A—C5—H5B 109.5 O3—C15—C14 114.2 (4)
C4—C5—H5C 109.5 H6F—O6—H6G 107.5
H5A—C5—H5C 109.5 H7C—O7—H7D 108.5
H5B—C5—H5C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H51···O4i 0.85 2.58 3.177 (4) 128
O5—H52···O4ii 0.85 1.90 2.748 (4) 174
N2—H2···O2iii 0.86 2.09 2.943 (4) 171
N4—H4···O7 0.86 2.03 2.847 (4) 158
O6—H6F···O5iv 0.85 2.50 3.259 (4) 149
O6—H6G···O4v 0.85 2.30 3.057 (5) 148
O7—H7C···O3vi 0.85 2.03 2.882 (4) 178
O7—H7D···O6 0.85 1.97 2.818 (4) 177

Symmetry codes: (i) x, y, z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+2, y−1/2, −z+3/2; (v) −x+2, y−1/2, −z+1/2; (vi) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2649).

References

  1. Beznischenko, A. O., Makhankova, V. G., Kokozay, V. N., Zubatyuk, R. I. & Shishkin, O. V. (2007). Inorg. Chim. Acta, 10, 1325–1329
  2. Bouwman, E., Douziech, B., Gutierrez-Soto, L., Beretta, M., Driessen, W. L., Reedijk, J. & Mendoza-Daz, G. (2000). Inorg. Chim. Acta, 304, 250–259.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Delgado, F. S., Lahoz, F., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2008). J. Cryst. Growth Des. 8, 3219–3232.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Pajunen, A. (1981). Cryst. Struct. Commun. 10, 957–958.
  7. Rigaku. (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001012/dn2649sup1.cif

e-67-0m172-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001012/dn2649Isup2.hkl

e-67-0m172-Isup2.hkl (173KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES