Abstract
In the title compound, C12H17NO3S, the amide H atom is syn to the ortho-methyl group of the benzene ring and the C—S—N—C torsion angle is −65.39 (17)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds in which the acceptor O atom is bound to the S atom.
Related literature
Sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976 ▶). Their tendency and preferences for hydrogen bonding in the solid state can give rise to polymorphism, see: Yang & Guillory (1972 ▶); Adsmond & Grant (2001 ▶). For our studies on the effect of substituents on the crystal structures of this class of compounds, see: Gowda et al. (2008a ▶,b
▶, 2010 ▶).
Experimental
Crystal data
C12H17NO3S
M r = 255.33
Monoclinic,
a = 7.3827 (6) Å
b = 21.986 (2) Å
c = 8.6060 (8) Å
β = 97.158 (9)°
V = 1386.0 (2) Å3
Z = 4
Cu Kα radiation
μ = 2.06 mm−1
T = 299 K
0.30 × 0.25 × 0.25 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
3884 measured reflections
2472 independent reflections
2202 reflections with I > 2σ(I)
R int = 0.050
3 standard reflections every 120 min intensity decay: 0.5%
Refinement
R[F 2 > 2σ(F 2)] = 0.037
wR(F 2) = 0.098
S = 1.05
2472 reflections
162 parameters
1 restraint
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.38 e Å−3
Δρmin = −0.35 e Å−3
Data collection: CAD-4-PC (Enraf–Nonius, 1996 ▶); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2009 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811003400/tk2712sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003400/tk2712Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1N⋯O1i | 0.82 (2) | 2.10 (2) | 2.906 (2) | 170 (2) |
Symmetry code: (i)
.
Acknowledgments
KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.
supplementary crystallographic information
Comment
The molecular structures of sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976), and their propensity for hydrogen bonding in the solid state, due to the presence of various hydrogen bond donors and acceptors, can give rise to polymorphism (Yang & Guillory, 1972; Adsmond & Grant, 2001). Hence, the nature and position of substituents play a significant role on the crystal structures of N-(aryl)sulfonoamides. As a part of a study of the substituent effects on the crystal structures of this class of compounds (Gowda et al., 2008a,b, 2010), the structure of N-(2-methylphenylsulfonyl)-2,2,2- trimethylacetamide (I) has been determined.
The N—H and C=O bonds are anti to each other (Fig. 1), as observed in each of N-(phenylsulfonyl)acetamide (II) (Gowda et al., 2010), N-(phenylsulfonyl)-2,2,2-trimethylacetamide (III) (Gowda et al., 2008b) and N-(4-methylphenylsulfonyl)-2,2,2-trimethylacetamide (IV) (Gowda et al., 2008a). Further, the amide hydrogen is syn to the ortho-methyl group in the benzene ring. The molecule in (I) is bent at the S-atom with the C1—S1—N1—C7 torsion angle being -65.39 (17)°, compared to the values of -58.8 (4)° in (II), -64.5 (3)° in (III) and -68.2 (2)° in (IV).
In the crystal structure, the pairs of intermolecular N–H···O hydrogen bonds (Table 1) link inversion-related molecules into dimeric aggregates where the acceptor O atom is bound to the S atom; Fig. 2.
Experimental
Compound (I) was prepared by refluxing 2-methylbenzenesulfonamide (0.10 mole) with an excess of pivalyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution.Compound (I) was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. Prism like red crystals were obtained from a slow evaporation of an ethanolic solution of (I).
Refinement
The amide-H atom was located in a difference map and refined with the distance restraint N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).
Figures
Fig. 1.
Molecular structure of (I), showing the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing for (I) viewed in projection down the a axis. Hydrogen bonds are shown as dashed lines.
Crystal data
| C12H17NO3S | F(000) = 544 |
| Mr = 255.33 | Dx = 1.224 Mg m−3 |
| Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
| Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
| a = 7.3827 (6) Å | θ = 6.0–21.6° |
| b = 21.986 (2) Å | µ = 2.06 mm−1 |
| c = 8.6060 (8) Å | T = 299 K |
| β = 97.158 (9)° | Prism, red |
| V = 1386.0 (2) Å3 | 0.30 × 0.25 × 0.25 mm |
| Z = 4 |
Data collection
| Enraf–Nonius CAD-4 diffractometer | Rint = 0.050 |
| Radiation source: fine-focus sealed tube | θmax = 67.0°, θmin = 4.0° |
| graphite | h = −8→4 |
| ω/2θ scans | k = −26→0 |
| 3884 measured reflections | l = −10→10 |
| 2472 independent reflections | 3 standard reflections every 120 min |
| 2202 reflections with I > 2σ(I) | intensity decay: 0.5% |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0444P)2 + 0.5143P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.05 | (Δ/σ)max = 0.001 |
| 2472 reflections | Δρmax = 0.38 e Å−3 |
| 162 parameters | Δρmin = −0.35 e Å−3 |
| 1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0174 (8) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.5655 (2) | 0.64776 (8) | 0.66047 (17) | 0.0386 (4) | |
| C2 | 0.7426 (2) | 0.64421 (9) | 0.6175 (2) | 0.0460 (4) | |
| C3 | 0.8623 (3) | 0.69061 (10) | 0.6714 (2) | 0.0574 (5) | |
| H3 | 0.9803 | 0.6902 | 0.6443 | 0.069* | |
| C4 | 0.8114 (3) | 0.73713 (10) | 0.7636 (3) | 0.0643 (6) | |
| H4 | 0.8957 | 0.7669 | 0.7998 | 0.077* | |
| C5 | 0.6366 (3) | 0.73991 (10) | 0.8024 (3) | 0.0637 (6) | |
| H5 | 0.6026 | 0.7715 | 0.8644 | 0.076* | |
| C6 | 0.5122 (3) | 0.69569 (9) | 0.7493 (2) | 0.0495 (4) | |
| H6 | 0.3928 | 0.6979 | 0.7728 | 0.059* | |
| C7 | 0.2796 (2) | 0.62930 (9) | 0.32969 (19) | 0.0452 (4) | |
| C8 | 0.2533 (3) | 0.61352 (10) | 0.1557 (2) | 0.0574 (5) | |
| C9 | 0.4402 (4) | 0.60025 (15) | 0.1019 (3) | 0.0859 (9) | |
| H9A | 0.4938 | 0.5654 | 0.1569 | 0.103* | |
| H9B | 0.5187 | 0.6348 | 0.1237 | 0.103* | |
| H9C | 0.4248 | 0.5922 | −0.0087 | 0.103* | |
| C10 | 0.1352 (5) | 0.55743 (18) | 0.1291 (3) | 0.1121 (12) | |
| H10A | 0.0191 | 0.5649 | 0.1648 | 0.135* | |
| H10B | 0.1942 | 0.5239 | 0.1861 | 0.135* | |
| H10C | 0.1173 | 0.5479 | 0.0193 | 0.135* | |
| C11 | 0.1705 (5) | 0.66816 (14) | 0.0647 (3) | 0.0888 (9) | |
| H11A | 0.2493 | 0.7027 | 0.0855 | 0.107* | |
| H11B | 0.0532 | 0.6770 | 0.0965 | 0.107* | |
| H11C | 0.1566 | 0.6592 | −0.0453 | 0.107* | |
| C12 | 0.8070 (3) | 0.59462 (12) | 0.5168 (3) | 0.0670 (6) | |
| H12A | 0.7316 | 0.5940 | 0.4175 | 0.080* | |
| H12B | 0.7990 | 0.5561 | 0.5679 | 0.080* | |
| H12C | 0.9314 | 0.6022 | 0.5008 | 0.080* | |
| N1 | 0.3642 (2) | 0.58401 (7) | 0.42600 (16) | 0.0439 (4) | |
| H1N | 0.403 (3) | 0.5529 (8) | 0.390 (2) | 0.053* | |
| O1 | 0.49106 (18) | 0.53203 (6) | 0.66336 (13) | 0.0508 (3) | |
| O2 | 0.24290 (17) | 0.60428 (7) | 0.68099 (15) | 0.0536 (4) | |
| O3 | 0.2347 (2) | 0.67637 (7) | 0.38512 (15) | 0.0604 (4) | |
| S1 | 0.40583 (5) | 0.588952 (19) | 0.61796 (4) | 0.03927 (17) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0424 (9) | 0.0401 (9) | 0.0319 (7) | 0.0023 (7) | −0.0013 (6) | 0.0018 (6) |
| C2 | 0.0418 (9) | 0.0505 (10) | 0.0441 (9) | 0.0040 (8) | −0.0020 (7) | 0.0020 (8) |
| C3 | 0.0455 (10) | 0.0631 (13) | 0.0613 (12) | −0.0043 (9) | −0.0029 (9) | 0.0057 (9) |
| C4 | 0.0690 (14) | 0.0542 (12) | 0.0650 (13) | −0.0143 (10) | −0.0107 (10) | −0.0032 (10) |
| C5 | 0.0817 (15) | 0.0485 (12) | 0.0588 (12) | −0.0006 (10) | 0.0006 (11) | −0.0143 (9) |
| C6 | 0.0556 (10) | 0.0488 (10) | 0.0438 (9) | 0.0043 (8) | 0.0049 (8) | −0.0049 (8) |
| C7 | 0.0458 (9) | 0.0525 (11) | 0.0360 (8) | 0.0026 (8) | −0.0005 (7) | 0.0001 (7) |
| C8 | 0.0759 (13) | 0.0610 (13) | 0.0325 (9) | 0.0066 (11) | −0.0040 (8) | −0.0011 (8) |
| C9 | 0.113 (2) | 0.102 (2) | 0.0456 (12) | 0.0371 (17) | 0.0222 (13) | 0.0108 (12) |
| C10 | 0.145 (3) | 0.113 (3) | 0.0665 (16) | −0.038 (2) | −0.0314 (17) | −0.0137 (16) |
| C11 | 0.122 (2) | 0.098 (2) | 0.0431 (11) | 0.0481 (18) | −0.0054 (12) | 0.0072 (11) |
| C12 | 0.0462 (11) | 0.0754 (16) | 0.0807 (15) | 0.0058 (10) | 0.0127 (10) | −0.0192 (12) |
| N1 | 0.0523 (9) | 0.0455 (9) | 0.0321 (7) | 0.0068 (7) | −0.0017 (6) | −0.0044 (6) |
| O1 | 0.0696 (8) | 0.0416 (7) | 0.0393 (6) | 0.0031 (6) | −0.0009 (6) | 0.0037 (5) |
| O2 | 0.0457 (7) | 0.0712 (9) | 0.0455 (7) | −0.0024 (6) | 0.0112 (5) | −0.0053 (6) |
| O3 | 0.0777 (10) | 0.0550 (8) | 0.0466 (7) | 0.0184 (7) | 0.0007 (6) | −0.0044 (6) |
| S1 | 0.0434 (3) | 0.0433 (3) | 0.0304 (2) | 0.00067 (17) | 0.00183 (16) | −0.00052 (15) |
Geometric parameters (Å, °)
| C1—C6 | 1.387 (3) | C8—C9 | 1.537 (3) |
| C1—C2 | 1.405 (2) | C9—H9A | 0.9600 |
| C1—S1 | 1.7570 (17) | C9—H9B | 0.9600 |
| C2—C3 | 1.391 (3) | C9—H9C | 0.9600 |
| C2—C12 | 1.506 (3) | C10—H10A | 0.9600 |
| C3—C4 | 1.375 (3) | C10—H10B | 0.9600 |
| C3—H3 | 0.9300 | C10—H10C | 0.9600 |
| C4—C5 | 1.374 (3) | C11—H11A | 0.9600 |
| C4—H4 | 0.9300 | C11—H11B | 0.9600 |
| C5—C6 | 1.376 (3) | C11—H11C | 0.9600 |
| C5—H5 | 0.9300 | C12—H12A | 0.9600 |
| C6—H6 | 0.9300 | C12—H12B | 0.9600 |
| C7—O3 | 1.203 (2) | C12—H12C | 0.9600 |
| C7—N1 | 1.393 (2) | N1—S1 | 1.6459 (14) |
| C7—C8 | 1.526 (2) | N1—H1N | 0.817 (16) |
| C8—C10 | 1.511 (4) | O1—S1 | 1.4330 (13) |
| C8—C11 | 1.520 (3) | O2—S1 | 1.4204 (13) |
| C6—C1—C2 | 121.63 (17) | C8—C9—H9C | 109.5 |
| C6—C1—S1 | 116.41 (14) | H9A—C9—H9C | 109.5 |
| C2—C1—S1 | 121.78 (14) | H9B—C9—H9C | 109.5 |
| C3—C2—C1 | 116.41 (18) | C8—C10—H10A | 109.5 |
| C3—C2—C12 | 119.35 (18) | C8—C10—H10B | 109.5 |
| C1—C2—C12 | 124.24 (18) | H10A—C10—H10B | 109.5 |
| C4—C3—C2 | 122.0 (2) | C8—C10—H10C | 109.5 |
| C4—C3—H3 | 119.0 | H10A—C10—H10C | 109.5 |
| C2—C3—H3 | 119.0 | H10B—C10—H10C | 109.5 |
| C5—C4—C3 | 120.4 (2) | C8—C11—H11A | 109.5 |
| C5—C4—H4 | 119.8 | C8—C11—H11B | 109.5 |
| C3—C4—H4 | 119.8 | H11A—C11—H11B | 109.5 |
| C4—C5—C6 | 119.7 (2) | C8—C11—H11C | 109.5 |
| C4—C5—H5 | 120.1 | H11A—C11—H11C | 109.5 |
| C6—C5—H5 | 120.1 | H11B—C11—H11C | 109.5 |
| C5—C6—C1 | 119.75 (19) | C2—C12—H12A | 109.5 |
| C5—C6—H6 | 120.1 | C2—C12—H12B | 109.5 |
| C1—C6—H6 | 120.1 | H12A—C12—H12B | 109.5 |
| O3—C7—N1 | 120.29 (16) | C2—C12—H12C | 109.5 |
| O3—C7—C8 | 125.23 (17) | H12A—C12—H12C | 109.5 |
| N1—C7—C8 | 114.48 (16) | H12B—C12—H12C | 109.5 |
| C10—C8—C11 | 112.3 (2) | C7—N1—S1 | 124.33 (13) |
| C10—C8—C7 | 109.58 (19) | C7—N1—H1N | 121.7 (15) |
| C11—C8—C7 | 108.65 (18) | S1—N1—H1N | 113.9 (15) |
| C10—C8—C9 | 108.8 (3) | O2—S1—O1 | 117.84 (8) |
| C11—C8—C9 | 108.3 (2) | O2—S1—N1 | 109.75 (8) |
| C7—C8—C9 | 109.25 (17) | O1—S1—N1 | 103.69 (7) |
| C8—C9—H9A | 109.5 | O2—S1—C1 | 108.90 (8) |
| C8—C9—H9B | 109.5 | O1—S1—C1 | 108.99 (8) |
| H9A—C9—H9B | 109.5 | N1—S1—C1 | 107.11 (8) |
| C6—C1—C2—C3 | 1.3 (3) | N1—C7—C8—C11 | −176.7 (2) |
| S1—C1—C2—C3 | −173.65 (13) | O3—C7—C8—C9 | 120.8 (2) |
| C6—C1—C2—C12 | −177.79 (19) | N1—C7—C8—C9 | −58.8 (2) |
| S1—C1—C2—C12 | 7.3 (3) | O3—C7—N1—S1 | 1.5 (3) |
| C1—C2—C3—C4 | 0.8 (3) | C8—C7—N1—S1 | −178.99 (14) |
| C12—C2—C3—C4 | 179.9 (2) | C7—N1—S1—O2 | 52.69 (18) |
| C2—C3—C4—C5 | −1.6 (3) | C7—N1—S1—O1 | 179.43 (15) |
| C3—C4—C5—C6 | 0.3 (3) | C7—N1—S1—C1 | −65.39 (17) |
| C4—C5—C6—C1 | 1.8 (3) | C6—C1—S1—O2 | 2.45 (16) |
| C2—C1—C6—C5 | −2.6 (3) | C2—C1—S1—O2 | 177.61 (13) |
| S1—C1—C6—C5 | 172.59 (15) | C6—C1—S1—O1 | −127.33 (13) |
| O3—C7—C8—C10 | −120.1 (3) | C2—C1—S1—O1 | 47.82 (15) |
| N1—C7—C8—C10 | 60.3 (3) | C6—C1—S1—N1 | 121.08 (14) |
| O3—C7—C8—C11 | 2.9 (3) | C2—C1—S1—N1 | −63.76 (15) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1N···O1i | 0.82 (2) | 2.10 (2) | 2.906 (2) | 170 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2712).
References
- Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
- Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
- Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284. [DOI] [PMC free article] [PubMed]
- Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008a). Acta Cryst. E64, o1274. [DOI] [PMC free article] [PubMed]
- Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64, o1410. [DOI] [PMC free article] [PubMed]
- Maren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309–327. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.
- Yang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26–40. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811003400/tk2712sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003400/tk2712Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


