Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 12;67(Pt 2):o354. doi: 10.1107/S1600536810054504

(E)-Methyl 3-(3,4-dihy­droxy­phen­yl)acrylate

Li Wang a, Fa-Yan Meng a, Cui-Wu Lin a,*, Hai-Yan Chen a, Xuan Luo a
PMCID: PMC3051619  PMID: 21523034

Abstract

The benzene ring in the title compound, C10H10O4, makes an angle of 4.4 (1)° with the C—C—C—O linker. The hy­droxy groups are involved in both intra- and inter­molecular O—H⋯O hydrogen bonds. The crystal packing is stabilized by O—H⋯O hydrogen-bonding inter­actions. The mol­ecules of the caffeic acid ester form a dimeric structure in a head-to-head manner along the a axis through O—H⋯O hydrogen bonds. The dimers inter­act with one another through O—H⋯O hydrogen bonds, forming supermolecular chains. These chains are further extended through C—H⋯O hydrogen bonds as well as van der Waals inter­actions into the final three-dimensional architecture.

Related literature

For properties of caffeic acids and their esters, see: Altug et al. (2008); Ates et al. (2006); Atik et al. (2006); Chun et al. (2008); Huang et al. (2010); Hwang et al. (2001); Padinchare et al. (2001). For a polymorphic form of the title compound, see: Chen et al. (1979).graphic file with name e-67-0o354-scheme1.jpg

Experimental

Crystal data

  • C10H10O4

  • M r = 194.18

  • Triclinic, Inline graphic

  • a = 5.129 (5) Å

  • b = 9.969 (8) Å

  • c = 10.586 (9) Å

  • α = 117.627 (7)°

  • β = 97.924 (11)°

  • γ = 94.322 (11)°

  • V = 468.9 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.33 × 0.24 × 0.18 mm

Data collection

  • Multiwire proportional diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.966, T max = 0.981

  • 2494 measured reflections

  • 1619 independent reflections

  • 1337 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.120

  • S = 1.05

  • 1619 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054504/bg2376sup1.cif

e-67-0o354-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054504/bg2376Isup2.hkl

e-67-0o354-Isup2.hkl (79.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3 0.82 2.28 2.723 (2) 114
O4—H4A⋯O3i 0.82 2.15 2.835 (2) 141
O3—H3A⋯O2ii 0.82 1.95 2.764 (2) 175
C10—H10A⋯O2ii 0.93 2.56 3.260 (4) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (20962002, 20662001) and the National Undergraduates Innovating Experimentation Project (091059314).

supplementary crystallographic information

Comment

Some naturally occurring caffeic acids and their esters attract much attention in biology and medicine (Hwang et al., 2001; Altug et al., 2008). These compounds show antiviral, antibacterial, vasoactive, antiatherogenic, antiproliferative, antioxidant and antiinflammatory properties (Atik et al., 2006; Padinchare et al., 2001; Ates et al., 2006). Our previous research found that the phenolic acids compounds including caffeic acid, chlorogenic acid, ferulic acid, vanillic acid, syringic acid and protocatechuic acid from Blumea riparia DC have a significant role at antiplatelet activity (Huang et al.., 2010). This prompted us to synthesize a series of caffeic acid esters and amides to investigate their properties. In this paper, we report a polymorph of C10H10O4 (Chen et al.., 1979).

In the title compound (Fig. 1), all values of the geometric parameters are normal. The benzene ring is planar within experimental error and it makes an angle of 4.4 (1)° to the linker (C2–C3–C4–O2). Hydroxy groups contribute to intermolecular O—H···O hydrogen bonds. In the case of caffeic esters, the presence of an ethylenic spacer allows the formation of a conjugated system, strongly stabilized through π-electron delocalization (Chun et al., 2008).

The bond C3=C4 is a trans-double bond. The crystal packing is stabilized by intramolecular (Table 1, entries 1 and 2) and intermolecular hydrogen-bonding interactions (Table 1, remaining entries). The molecules of the caffeic acid ester form a dimeric structure through O—H···O hydrogen bonds along the a axis in a head-to-head manner (Table 1, third entry) . The dimer interacts with another dimmer through O—H···O hydrogen bonds (Table 1, fourth entry) to form one-dimensional supermolecule chains. These one-dimensional supermolecule chains are further extended through C—H···O hydrogen bonds (Table 1, fifth entry) as well as van der Waals interactions into the final 3-D architecture (Fig.2).

Experimental

Commercial caffeic acid (1.79 g, 10 mmol) was dissolved in tetrahydrofuran solution(16 ml), followed by methanol (16 ml) and the addition of concentrated hydrochloric acid (8 ml). The mixture was stirred at 60 °C for 60 minutes, followed by the addition of water and extracted with ethyl acetate. The organic layer was washed with sodium bicarbonate and water, dried over magnesium sulfate, and concentrated to give a solid residue. The residue was recrystallized from petroleum ether to give the title compound as a colourless crystal (1.64 g, yield: 84%)

Refinement

All the H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso = 1.2Ueq.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of (E)-methyl 3-(3,4-dihydroxyphenyl)acrylate with displacement ellipsoids at a 45% probability level. Dashed lines represent intramolecular hydrogen bonds.

Fig. 2.

Fig. 2.

Packing of the molecules drawn along the b axis. Dashed lines represent hydrogen bonds.

Crystal data

C10H10O4 Z = 2
Mr = 194.18 F(000) = 204
Triclinic, P1 Dx = 1.375 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.129 (5) Å Cell parameters from 1619 reflections
b = 9.969 (8) Å θ = 2.2–25.0°
c = 10.586 (9) Å µ = 0.11 mm1
α = 117.627 (7)° T = 296 K
β = 97.924 (11)° Block, colourless
γ = 94.322 (11)° 0.33 × 0.24 × 0.18 mm
V = 468.9 (7) Å3

Data collection

Multiwire proportional diffractometer 1619 independent reflections
Radiation source: fine-focus sealed tube 1337 reflections with I > 2σ(I)
graphite Rint = 0.013
phi and ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −6→5
Tmin = 0.966, Tmax = 0.981 k = −11→11
2494 measured reflections l = −12→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.0896P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1619 reflections Δρmax = 0.18 e Å3
128 parameters Δρmin = −0.13 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.023 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3038 (3) 0.37534 (14) −0.18804 (13) 0.0565 (4)
O2 0.5270 (3) 0.19675 (16) −0.17913 (15) 0.0718 (5)
O3 0.1400 (2) −0.02223 (14) 0.35179 (13) 0.0548 (4)
H3A 0.2389 −0.0773 0.3036 0.082*
O4 −0.2041 (3) 0.17229 (17) 0.47736 (15) 0.0696 (5)
H4A −0.1537 0.1033 0.4914 0.104*
C1 0.4334 (5) 0.3652 (2) −0.3048 (2) 0.0689 (6)
H1A 0.3752 0.4367 −0.3354 0.103*
H1B 0.3878 0.2631 −0.3853 0.103*
H1C 0.6232 0.3891 −0.2711 0.103*
C2 0.3676 (3) 0.28238 (18) −0.13522 (17) 0.0436 (4)
C3 0.2244 (3) 0.29584 (18) −0.02085 (17) 0.0445 (4)
H3B 0.1053 0.3654 0.0075 0.053*
C4 0.2628 (3) 0.20962 (19) 0.04297 (18) 0.0460 (4)
H4B 0.3849 0.1428 0.0100 0.055*
C5 0.1401 (3) 0.20498 (18) 0.15770 (17) 0.0424 (4)
C6 −0.0350 (3) 0.30272 (19) 0.22626 (19) 0.0513 (5)
H6A −0.0774 0.3767 0.2001 0.062*
C7 −0.1459 (4) 0.2904 (2) 0.3326 (2) 0.0568 (5)
H7A −0.2618 0.3568 0.3778 0.068*
C8 −0.0874 (3) 0.1811 (2) 0.37298 (18) 0.0476 (4)
C9 0.0889 (3) 0.08337 (18) 0.30649 (16) 0.0423 (4)
C10 0.2006 (3) 0.09637 (18) 0.20077 (17) 0.0442 (4)
H10A 0.3192 0.0312 0.1571 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0832 (9) 0.0569 (7) 0.0553 (7) 0.0308 (6) 0.0364 (6) 0.0392 (6)
O2 0.0865 (10) 0.0896 (10) 0.0850 (10) 0.0535 (8) 0.0538 (8) 0.0637 (8)
O3 0.0709 (8) 0.0646 (8) 0.0599 (7) 0.0330 (6) 0.0364 (6) 0.0458 (6)
O4 0.0859 (10) 0.0920 (10) 0.0775 (9) 0.0488 (8) 0.0561 (8) 0.0633 (8)
C1 0.1062 (17) 0.0689 (12) 0.0585 (11) 0.0311 (11) 0.0432 (11) 0.0430 (10)
C2 0.0502 (10) 0.0428 (8) 0.0462 (9) 0.0123 (7) 0.0160 (7) 0.0257 (7)
C3 0.0501 (10) 0.0474 (9) 0.0464 (9) 0.0156 (7) 0.0185 (7) 0.0275 (7)
C4 0.0511 (10) 0.0498 (9) 0.0487 (9) 0.0161 (7) 0.0205 (8) 0.0291 (8)
C5 0.0451 (9) 0.0463 (9) 0.0438 (8) 0.0104 (7) 0.0143 (7) 0.0263 (7)
C6 0.0596 (11) 0.0559 (10) 0.0588 (10) 0.0233 (8) 0.0246 (8) 0.0388 (9)
C7 0.0644 (12) 0.0650 (11) 0.0655 (11) 0.0341 (9) 0.0361 (9) 0.0418 (10)
C8 0.0520 (10) 0.0588 (10) 0.0467 (9) 0.0178 (8) 0.0233 (7) 0.0324 (8)
C9 0.0470 (9) 0.0475 (9) 0.0424 (8) 0.0121 (7) 0.0142 (7) 0.0278 (7)
C10 0.0490 (10) 0.0486 (9) 0.0456 (9) 0.0173 (7) 0.0209 (7) 0.0268 (7)

Geometric parameters (Å, °)

O1—C2 1.325 (2) C3—H3B 0.9300
O1—C1 1.449 (2) C4—C5 1.460 (2)
O2—C2 1.206 (2) C4—H4B 0.9300
O3—C9 1.372 (2) C5—C6 1.392 (2)
O3—H3A 0.8200 C5—C10 1.395 (2)
O4—C8 1.361 (2) C6—C7 1.378 (2)
O4—H4A 0.8200 C6—H6A 0.9300
C1—H1A 0.9600 C7—C8 1.381 (2)
C1—H1B 0.9600 C7—H7A 0.9300
C1—H1C 0.9600 C8—C9 1.391 (2)
C2—C3 1.460 (2) C9—C10 1.378 (2)
C3—C4 1.327 (2) C10—H10A 0.9300
C2—O1—C1 115.65 (14) C6—C5—C10 118.11 (15)
C9—O3—H3A 109.5 C6—C5—C4 123.59 (15)
C8—O4—H4A 109.5 C10—C5—C4 118.30 (14)
O1—C1—H1A 109.5 C7—C6—C5 120.39 (15)
O1—C1—H1B 109.5 C7—C6—H6A 119.8
H1A—C1—H1B 109.5 C5—C6—H6A 119.8
O1—C1—H1C 109.5 C6—C7—C8 121.02 (16)
H1A—C1—H1C 109.5 C6—C7—H7A 119.5
H1B—C1—H1C 109.5 C8—C7—H7A 119.5
O2—C2—O1 122.42 (15) O4—C8—C7 118.86 (15)
O2—C2—C3 124.94 (14) O4—C8—C9 121.79 (15)
O1—C2—C3 112.64 (14) C7—C8—C9 119.35 (15)
C4—C3—C2 120.52 (15) O3—C9—C10 123.84 (14)
C4—C3—H3B 119.7 O3—C9—C8 116.62 (14)
C2—C3—H3B 119.7 C10—C9—C8 119.54 (14)
C3—C4—C5 129.05 (16) C9—C10—C5 121.59 (14)
C3—C4—H4B 115.5 C9—C10—H10A 119.2
C5—C4—H4B 115.5 C5—C10—H10A 119.2
C1—O1—C2—O2 1.4 (3) C6—C7—C8—O4 −179.27 (17)
C1—O1—C2—C3 −178.44 (15) C6—C7—C8—C9 0.9 (3)
O2—C2—C3—C4 −0.5 (3) O4—C8—C9—O3 −0.2 (2)
O1—C2—C3—C4 179.32 (15) C7—C8—C9—O3 179.66 (16)
C2—C3—C4—C5 −179.72 (15) O4—C8—C9—C10 179.64 (16)
C3—C4—C5—C6 −3.9 (3) C7—C8—C9—C10 −0.5 (3)
C3—C4—C5—C10 175.86 (16) O3—C9—C10—C5 179.43 (14)
C10—C5—C6—C7 −0.6 (3) C8—C9—C10—C5 −0.4 (3)
C4—C5—C6—C7 179.19 (17) C6—C5—C10—C9 0.9 (2)
C5—C6—C7—C8 −0.3 (3) C4—C5—C10—C9 −178.84 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4A···O3 0.82 2.28 2.723 (2) 114.
C4—H4B···O2 0.93 2.48 2.829 (4) 102
O4—H4A···O3i 0.82 2.15 2.835 (2) 141.
O3—H3A···O2ii 0.82 1.95 2.764 (2) 175.
C10—H10A···O2ii 0.93 2.56 3.260 (4) 132

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2376).

References

  1. Altug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135–142. [DOI] [PubMed]
  2. Ates, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283–289. [DOI] [PubMed]
  3. Atik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293–297. [DOI] [PubMed]
  4. Bruker (2005). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chen, J. S., Watson, W. H., Chiang, M. T. & Silva, M. (1979). Cryst. Struct. Commun. 8, 143.
  6. Chun, N. X., Wei, X. H., Wei, Z. & Guo, H. W. (2008). J. Chem. Crystallogr. 38, 583–586.
  7. Huang, L., Lin, C. W., Li, A. Y., Wei, B. Y., Teng, J. W. & Li, L. (2010). Nat. Prod. Commun. 5, 1–4. [PubMed]
  8. Hwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429–1437. [DOI] [PubMed]
  9. Padinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215–217.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054504/bg2376sup1.cif

e-67-0o354-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054504/bg2376Isup2.hkl

e-67-0o354-Isup2.hkl (79.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES