Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 8;67(Pt 2):o264–o265. doi: 10.1107/S1600536810053407

3-Hy­droxy-2-(4-hy­droxy­phen­yl)-4H-chromen-4-one

Michał Wera a, Vasyl G Pivovarenko b, Jerzy Błażejowski a,*
PMCID: PMC3051623  PMID: 21522957

Abstract

In the title compound, C15H10O4, the benzene ring is twisted at an angle of 20.7 (1)° relative to the 4H-chromene skeleton. In the crystal, adjacent mol­ecules are linked via a network of O—H⋯O and C—H⋯O hydrogen bonds. The mean planes of adjacent 4H-chromene moieties are parallel or oriented at an angle of 20.9 (1)° in the crystal structure.

Related literature

For general background to the properties of flavones (deriva­tives of 2-phenyl-4H-chromen-4-one) and fluorescence of flavonols (derivatives of 3-hy­droxy-2-phenyl-4H-chromen-4-one), see: Bader et al. (2003); Choulier et al. (2010); Demchenko (2009); Klymchenko & Demchenko (2003); Nijveldt et al. (2001); Pivovarenko et al. (2004); Roshal et al. (2003); Sengupta & Kasha (1979). For related structures, see: Etter et al. (1986); Kumar et al. (1998); Waller et al. (2003). For inter­molecular inter­actions, see: Aakeröy et al. (1992); Novoa et al. (2006). For the synthesis, see: Bader et al. (2003); Sobottka et al. (2000).graphic file with name e-67-0o264-scheme1.jpg

Experimental

Crystal data

  • C15H10O4

  • M r = 254.23

  • Monoclinic, Inline graphic

  • a = 3.7897 (3) Å

  • b = 17.6380 (15) Å

  • c = 16.7745 (16) Å

  • β = 90.968 (9)°

  • V = 1121.09 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.6 × 0.2 × 0.2 mm

Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.329, T max = 1.000

  • 9273 measured reflections

  • 1979 independent reflections

  • 920 reflections with I > 2σ(I)

  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.155

  • S = 0.84

  • 1979 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810053407/xu5114sup1.cif

e-67-0o264-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810053407/xu5114Isup2.hkl

e-67-0o264-Isup2.hkl (97.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O19i 0.83 (5) 2.10 (5) 2.832 (4) 148 (4)
O19—H19⋯O12ii 0.91 (5) 1.79 (5) 2.705 (4) 176 (5)
C7—H7⋯O11iii 0.93 2.47 3.267 (4) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant DS/8220–4-0087–0).

supplementary crystallographic information

Comment

Flavones (derivatives of 2-phenyl-4H-chromen-4-one) appear in numerous natural systems and have been comprehensively investigated in view of their antioxidant features (Nijveldt et al., 2001). Related to flavones, 3-hydroxy-2-phenyl-4H-chromen-4-one (flavonols) exhibit dual fluorescence in the condensed phases resulting from the Excited State Intramolecular Proton Transfer (ESIPT) (Sengupta & Kasha, 1979). In flavonols this phenomenon is strongly affected by molecules from their environment, which makes the compounds interesting fluorescent sensors for analytical applications in chemistry, biology, biochemistry, ecology and medicine (Klymchenko & Demchenko, 2003; Demchenko, 2009; Choulier et al., 2010). Continuing our investigations into the physical chemistry of flavonols (Bader et al., 2003; Roshal et al., 2003; Pivovarenko et al., 2004), we present the crystal structure of 3-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one in the hope that its structural and fluorescent features will appear interesting and helpful in its practical applications.

In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 2-phenyl-4H-chromen-4-one moiety are typical of this group of compounds (Etter et al., 1986; Kumar et al., 1998; Waller et al., 2003). With respective average deviations from planarity of 0.0187 (1)° and 0.0041 (1)°, the 4H-chromene and benzene ring systems are oriented at a dihedral angle of 20.7 (1)° (in the case of flavonol this angle is 5.5 (1)° (Etter et al., 1986)). The mean planes of the adjacent 4H-chromen-4-one moieties are either parallel (remain at an angle of 0.0 (1)°) or inclined at 20.9 (1)°.

The crystal structure of the title compound is stabilized by a network of O—H···O (Aakeröy et al., 1992) (Table 1, Fig. 2) and C—H···O (Novoa et al., 2006) (Table 1, Fig. 2) hydrogen bonds, and by non-specific dispersive interactions. Each of the two OH groups is involved in hydrogen bonds as H atom acceptor and donor. The O11—H11···O12 intramolecular hydrogen bond (Table 1, Figs. 1 and 2) is the one involved in the ESIPT phenomenon characteristic of flavonols (Sengupta & Kasha, 1979).

Experimental

The title compound was synthesized in two steps. First, 3-hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one was prepared by alkaline condensation of 4-methoxybenzaldehyde with 1-(2-hydroxyphenyl)ethanone and subsequent oxidative heterocyclization of the product with hydrogen peroxide (the light green-yellow precipitate of the product was recrystallized twice from a 1% solution of acetic acid in ethanol) (Bader et al., 2003). Next, the 3-hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one thus obtained was converted to 3-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one by maintaining a solution of the former compound in molten pyridinium chloride at 495 K for 20 minutes, then cooling the reactant mixture, and pouring it into 1% aqueous HCl. Pale brown crystals suitable for X-ray investigations were grown from DMF solutions of the filtered precipitate of the final product (m.p. = 557–558 K; lit. 555–558 K (Sobottka et al., 2000)).

Refinement

H atoms of C—H bonds were positioned geometrically with H = 0.93 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). H atoms involved in O—H···O hydrogen bonds were located on a difference Fourier map and refined isotropically with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. The O—H···O hydrogen bond is indicated by a dashed line.

Fig. 2.

Fig. 2.

The arrangement of the molecules in the crystal structure. The O–H···O and C–H···O hydrogen bonds are represented by dashed lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x, –y + 1/2, z – 1/2; (ii) x – 1, –y + 1/2, z + 1/2; (iii) –x + 1, y + 1/2, –z + 3/2.]

Crystal data

C15H10O4 F(000) = 528
Mr = 254.23 Dx = 1.506 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1979 reflections
a = 3.7897 (3) Å θ = 3.4–25.0°
b = 17.6380 (15) Å µ = 0.11 mm1
c = 16.7745 (16) Å T = 295 K
β = 90.968 (9)° Needle, pale brown
V = 1121.09 (17) Å3 0.6 × 0.2 × 0.2 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer 1979 independent reflections
Radiation source: Enhance (Mo) X-ray Source 920 reflections with I > 2σ(I)
graphite Rint = 0.075
Detector resolution: 10.4002 pixels mm-1 θmax = 25.0°, θmin = 3.4°
ω scans h = −4→4
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −20→20
Tmin = 0.329, Tmax = 1.000 l = −19→19
9273 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0893P)2] where P = (Fo2 + 2Fc2)/3
S = 0.84 (Δ/σ)max < 0.001
1979 reflections Δρmax = 0.28 e Å3
179 parameters Δρmin = −0.31 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.011 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2942 (6) 0.46752 (12) 0.80136 (13) 0.0490 (7)
C2 0.2180 (8) 0.39182 (18) 0.8026 (2) 0.0416 (9)
C3 0.2703 (9) 0.34891 (18) 0.7361 (2) 0.0430 (9)
C4 0.4184 (9) 0.3797 (2) 0.6655 (2) 0.0470 (9)
C5 0.6344 (8) 0.4972 (2) 0.6004 (2) 0.0507 (10)
H5 0.6885 0.4702 0.5546 0.061*
C6 0.6924 (9) 0.5739 (2) 0.6035 (2) 0.0570 (10)
H6 0.7830 0.5990 0.5595 0.068*
C7 0.6161 (10) 0.6139 (2) 0.6719 (2) 0.0602 (11)
H7 0.6540 0.6660 0.6732 0.072*
C8 0.4854 (9) 0.5782 (2) 0.7379 (2) 0.0538 (10)
H8 0.4373 0.6054 0.7839 0.065*
C9 0.4944 (8) 0.45958 (18) 0.66600 (19) 0.0423 (9)
C10 0.4267 (8) 0.50063 (19) 0.7343 (2) 0.0431 (9)
O11 0.1984 (8) 0.27345 (14) 0.73772 (16) 0.0663 (9)
H11 0.167 (12) 0.257 (3) 0.692 (3) 0.099*
O12 0.4757 (7) 0.33773 (14) 0.60629 (15) 0.0662 (8)
C13 0.0981 (8) 0.36660 (19) 0.8811 (2) 0.0418 (9)
C14 0.1704 (9) 0.4109 (2) 0.9483 (2) 0.0488 (9)
H14 0.2816 0.4575 0.9424 0.059*
C15 0.0792 (9) 0.3865 (2) 1.0232 (2) 0.0514 (10)
H15 0.1291 0.4166 1.0675 0.062*
C16 −0.0861 (9) 0.3175 (2) 1.0325 (2) 0.0479 (9)
C17 −0.1637 (9) 0.2732 (2) 0.9672 (2) 0.0502 (10)
H17 −0.2771 0.2269 0.9735 0.060*
C18 −0.0727 (8) 0.29790 (19) 0.8922 (2) 0.0463 (9)
H18 −0.1270 0.2678 0.8481 0.056*
O19 −0.1701 (7) 0.29545 (15) 1.10853 (15) 0.0614 (8)
H19 −0.285 (11) 0.250 (3) 1.110 (3) 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0679 (16) 0.0378 (15) 0.0414 (16) −0.0017 (11) 0.0061 (12) 0.0001 (11)
C2 0.053 (2) 0.036 (2) 0.036 (2) −0.0001 (15) −0.0006 (16) 0.0032 (16)
C3 0.061 (2) 0.033 (2) 0.035 (2) 0.0025 (16) −0.0020 (17) 0.0000 (16)
C4 0.057 (2) 0.045 (2) 0.039 (2) 0.0033 (17) −0.0027 (17) −0.0001 (17)
C5 0.061 (2) 0.051 (3) 0.040 (2) 0.0038 (18) 0.0021 (18) 0.0014 (17)
C6 0.067 (2) 0.055 (3) 0.049 (3) −0.003 (2) 0.0049 (19) 0.0112 (19)
C7 0.080 (3) 0.044 (2) 0.057 (3) −0.007 (2) 0.002 (2) 0.007 (2)
C8 0.068 (2) 0.043 (2) 0.051 (3) −0.0048 (19) 0.0036 (19) −0.0028 (18)
C9 0.049 (2) 0.040 (2) 0.038 (2) 0.0041 (16) 0.0008 (17) 0.0045 (16)
C10 0.048 (2) 0.044 (2) 0.036 (2) 0.0011 (17) 0.0008 (17) 0.0049 (16)
O11 0.122 (2) 0.0371 (16) 0.0400 (17) −0.0105 (14) 0.0089 (16) −0.0016 (12)
O12 0.111 (2) 0.0486 (16) 0.0399 (17) 0.0058 (14) 0.0140 (14) −0.0030 (13)
C13 0.048 (2) 0.037 (2) 0.040 (2) 0.0051 (16) −0.0046 (16) −0.0003 (15)
C14 0.061 (2) 0.040 (2) 0.045 (2) −0.0006 (17) 0.0034 (18) 0.0014 (18)
C15 0.071 (3) 0.044 (2) 0.039 (2) 0.0022 (18) 0.0014 (18) −0.0035 (17)
C16 0.057 (2) 0.044 (2) 0.043 (2) 0.0084 (18) 0.0049 (17) 0.0009 (17)
C17 0.061 (2) 0.042 (2) 0.047 (3) −0.0046 (17) 0.0065 (18) 0.0012 (17)
C18 0.056 (2) 0.042 (2) 0.042 (2) −0.0007 (16) 0.0041 (17) −0.0033 (16)
O19 0.091 (2) 0.0553 (18) 0.0380 (17) −0.0007 (14) 0.0134 (14) 0.0056 (13)

Geometric parameters (Å, °)

O1—C2 1.366 (4) C8—H8 0.9300
O1—C10 1.370 (4) C9—C10 1.383 (5)
C2—C3 1.365 (4) O11—H11 0.82 (5)
C2—C13 1.469 (4) C13—C18 1.388 (4)
C3—O11 1.359 (4) C13—C14 1.394 (5)
C3—C4 1.427 (5) C14—C15 1.378 (5)
C4—O12 1.261 (4) C14—H14 0.9300
C4—C9 1.438 (5) C15—C16 1.379 (5)
C5—C6 1.372 (5) C15—H15 0.9300
C5—C9 1.397 (5) C16—C17 1.373 (5)
C5—H5 0.9300 C16—O19 1.375 (4)
C6—C7 1.381 (5) C17—C18 1.381 (5)
C6—H6 0.9300 C17—H17 0.9300
C7—C8 1.374 (5) C18—H18 0.9300
C7—H7 0.9300 O19—H19 0.91 (4)
C8—C10 1.387 (5)
C2—O1—C10 120.6 (3) C5—C9—C4 122.7 (3)
O1—C2—C3 119.7 (3) O1—C10—C9 122.2 (3)
O1—C2—C13 112.2 (3) O1—C10—C8 116.5 (3)
C3—C2—C13 128.0 (3) C9—C10—C8 121.3 (3)
O11—C3—C2 119.7 (3) C3—O11—H11 110 (3)
O11—C3—C4 118.1 (3) C18—C13—C14 117.8 (3)
C2—C3—C4 122.1 (3) C18—C13—C2 122.4 (3)
O12—C4—C3 120.4 (3) C14—C13—C2 119.7 (3)
O12—C4—C9 122.8 (3) C15—C14—C13 120.9 (3)
C3—C4—C9 116.7 (3) C15—C14—H14 119.6
C6—C5—C9 120.1 (3) C13—C14—H14 119.6
C6—C5—H5 119.9 C14—C15—C16 120.0 (3)
C9—C5—H5 119.9 C14—C15—H15 120.0
C5—C6—C7 119.9 (4) C16—C15—H15 120.0
C5—C6—H6 120.0 C17—C16—O19 122.0 (3)
C7—C6—H6 120.0 C17—C16—C15 120.2 (3)
C8—C7—C6 121.3 (4) O19—C16—C15 117.8 (3)
C8—C7—H7 119.4 C16—C17—C18 119.6 (3)
C6—C7—H7 119.4 C16—C17—H17 120.2
C7—C8—C10 118.5 (4) C18—C17—H17 120.2
C7—C8—H8 120.8 C17—C18—C13 121.4 (3)
C10—C8—H8 120.8 C17—C18—H18 119.3
C10—C9—C5 118.8 (3) C13—C18—H18 119.3
C10—C9—C4 118.5 (3) C16—O19—H19 113 (3)
C10—O1—C2—C3 −0.8 (4) C5—C9—C10—O1 −179.1 (3)
C10—O1—C2—C13 176.8 (3) C4—C9—C10—O1 0.8 (5)
O1—C2—C3—O11 179.2 (3) C5—C9—C10—C8 1.9 (5)
C13—C2—C3—O11 2.1 (5) C4—C9—C10—C8 −178.3 (3)
O1—C2—C3—C4 2.9 (5) C7—C8—C10—O1 −179.6 (3)
C13—C2—C3—C4 −174.2 (3) C7—C8—C10—C9 −0.5 (5)
O11—C3—C4—O12 0.9 (5) O1—C2—C13—C18 164.2 (3)
C2—C3—C4—O12 177.2 (3) C3—C2—C13—C18 −18.5 (5)
O11—C3—C4—C9 −179.4 (3) O1—C2—C13—C14 −18.9 (4)
C2—C3—C4—C9 −3.1 (5) C3—C2—C13—C14 158.5 (3)
C9—C5—C6—C7 0.8 (5) C18—C13—C14—C15 0.9 (5)
C5—C6—C7—C8 0.6 (6) C2—C13—C14—C15 −176.2 (3)
C6—C7—C8—C10 −0.8 (6) C13—C14—C15—C16 0.0 (5)
C6—C5—C9—C10 −2.0 (5) C14—C15—C16—C17 −0.7 (5)
C6—C5—C9—C4 178.2 (3) C14—C15—C16—O19 179.7 (3)
O12—C4—C9—C10 −179.1 (3) O19—C16—C17—C18 −179.8 (3)
C3—C4—C9—C10 1.2 (4) C15—C16—C17—C18 0.6 (5)
O12—C4—C9—C5 0.7 (5) C16—C17—C18—C13 0.3 (5)
C3—C4—C9—C5 −178.9 (3) C14—C13—C18—C17 −1.0 (5)
C2—O1—C10—C9 −1.1 (4) C2—C13—C18—C17 176.0 (3)
C2—O1—C10—C8 178.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O11—H11···O12 0.83 (5) 2.35 (5) 2.707 (4) 107 (4)
O11—H11···O19i 0.83 (5) 2.10 (5) 2.832 (4) 148 (4)
O19—H19···O12ii 0.91 (5) 1.79 (5) 2.705 (4) 176 (5)
C7—H7···O11iii 0.93 2.47 3.267 (4) 144

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x−1, −y+1/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5114).

References

  1. Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65.
  2. Bader, A. N., Pivovarenko, V., Demchenko, A. P., Ariese, F. & Gooijer, C. (2003). Spectrochim. Acta Part A, 59, 1593–1603. [DOI] [PubMed]
  3. Choulier, L., Shvadchak, V. V., Naidoo, A., Klymchenko, A. S., Mély, Y. & Altschuh, D. (2010). Anal. Biochem. 401, 188–195. [DOI] [PubMed]
  4. Demchenko, A. P. (2009). Introduction to Fluorescence Sensing The Netherlands: Springer Science and Business Media BV.
  5. Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155–167.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Klymchenko, A. S. & Demchenko, A. P. (2003). Phys. Chem. Chem. Phys. 5, 461–468.
  8. Kumar, S., Ramanathan, T., Subramanian, K. & Steiner, T. (1998). J. Chem. Crystallogr. 28, 931–933.
  9. Nijveldt, R. J., van Nood, E., van Hoorn, D. E. C., Boelens, P. G., van Norren, K. & van Leeuwen, P. A. M. (2001). Am. J. Clin. Nutr. 74, 418–425. [DOI] [PubMed]
  10. Novoa, J. J., Mota, F. & D’Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.
  11. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  12. Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2004). J. Mol. Struct. 708, 175–181.
  13. Roshal, A. D., Moroz, V. I., Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2003). J. Org. Chem. 68, 5860–5869. [DOI] [PubMed]
  14. Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382–385.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sobottka, A. M., Werner, W., Blaschke, G., Kiefer, W., Nowe, U., Dannhardt, G., Schapoval, E. E. S., Schenkel, E. P. & Scriba, G. K. E. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 205–210. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767–o768.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810053407/xu5114sup1.cif

e-67-0o264-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810053407/xu5114Isup2.hkl

e-67-0o264-Isup2.hkl (97.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES