Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 12;67(Pt 2):o371–o372. doi: 10.1107/S1600536811001036

Disordered structure of propane-1,2-diaminium dichloride

Izabela Pospieszna-Markiewicz a, Ewa Zielaskiewicz a, Wanda Radecka-Paryzek a, Maciej Kubicki a,*
PMCID: PMC3051629  PMID: 21523049

Abstract

In the title compound, C3H12N2 2+·2Cl, the cations are disordered over two well resolved positions in a 0.525 (13):0.475 (13) ratio. The disorder involves two C atoms which assume positions that make an almost mirror-sym­metrical system. Similar disorder is observed both at room temperature and at 120 (1) K. The conformation of the NCCN chain in both components is close to trans (the torsion angles ca ±170°), while that of CCCN chain is close to gauche (±50°). In the crystal, a network of relatively strong N—H⋯Cl hydrogen bonds connects the cations and anions into one-cation-deep layers parallel to (001); there are R 2 4(8) and R 2 4(11) ring motifs within the plane. The planes are only loosely connected by van der Waals contacts and electrostatic inter­actions between cations and anions.

Related literature

For general literature on polyamines, see, for example: Hosseinkhani et al. (2004); Pospieszna-Markiewicz et al. (2006, 2007); Ziebarth & Wang (2009); Itaka et al. (2010). For the crystal structures of simple salts of propane-1,2-diaminium, see: Aghabozorg et al. (2008); Gerrard & Weller (2002); Lee & Harrison (2003); Todd & Harrison (2005). graphic file with name e-67-0o371-scheme1.jpg

Experimental

Crystal data

  • C3H12N2 2+·2Cl

  • M r = 147.05

  • Orthorhombic, Inline graphic

  • a = 10.985 (3) Å

  • b = 7.079 (2) Å

  • c = 9.698 (2) Å

  • V = 754.1 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 6.95 mm−1

  • T = 120 K

  • 0.25 × 0.1 × 0.05 mm

Data collection

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.640, T max = 1.000

  • 2817 measured reflections

  • 1306 independent reflections

  • 1265 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.098

  • S = 1.13

  • 1306 reflections

  • 86 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983), 473 Friedel pairs

  • Flack parameter: 0.09 (3)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001036/cv5036sup1.cif

e-67-0o371-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001036/cv5036Isup2.hkl

e-67-0o371-Isup2.hkl (63.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯Cl1i 0.91 2.25 3.161 (3) 175
N1—H1E⋯Cl2ii 0.91 2.37 3.192 (3) 151
N1—H1F⋯Cl2 0.91 2.31 3.187 (3) 161
N4—H4B⋯Cl1 0.91 2.42 3.186 (3) 142
N4—H4A⋯Cl1iii 0.91 2.27 3.136 (3) 160
N4—H4C⋯Cl2iv 0.91 2.21 3.123 (2) 178

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

The study of polycation structure, counterions and the nature of the interaction between low-molecular-weight salts with some electrolites in solutions are very important to understanding behaviour biogenic polyamines under normal physiological conditions. Aliphatic biogenic polyamines in biological systems exist as polycations which interact with nucleic acid polyanions. The crystal structure of the salts of these amines are therefore essential in the modeling of nucleic acids. Complexes formed from DNA and polycations containing primary amine grups are relevant because of their potential use in gene therapy, modifying the conformation and the state of aggregation of DNA (Hosseinkhani et al., 2004; Ziebarth et al., 2009; Itaka et al., 2010). During our study on metal promoted synthesis ofSchiff base complexes derived from various polyamines and salicylaldehyde we isolated the crystals of some salts of polyamines (Pospieszna-Markiewicz et al., 2006, 2007). Here we report another salt, propane-1,2-diaminium dichloride (I, Scheme 1).

It turned out that in the crystal structure the cation is heavily disordered - disorder involves two carbon atoms - between the two positions with the site occupation factors of 0.525 (13) and 0.475 (13). Both alternative positions refined quite well (anisotropically) without any kind of restraints. Fig. 1 shows one of the alternatives (most occupied) and Fig. 2 - the comparison of both disordered cations. Similar disorder is observed at room temperature with s.o.f.'s of 0.57 (4) and 0.43 (4), so this disorder is rather of statistical nature.

Both alternative cations have opposite signs of torsion angles. The conformation of N1—C2—C3—N4 chain is extended (torsion angles are 172.0 (4)° and -168.5 (4)° for more and less occupied part, respectively) while the C21—C2—C3—N4 torsion angles are 50.0 (10)° and -47.0 (11)°. Such conformation - we will call it tg - is the most popular among the simple propane-1,2-diaminium salts (for instance it was found in the structures of hydrogenarsenate (Todd & Harrison, 2005), bis(6-carboxypyridine-2-carboxylate) (Aghabozorg et al., 2008), or tetrafluoro-beryllium (Gerrard & Weller, 2002). The other possibilities are also observed, for instance in some simple hydrates (e.g. arsenate monohydrate, Lee & Harrison, 2003) the g+g- combination is also reported.

In the crystal structure the strong N—H···Cl hydrogen bond connects molecules into two-dimensional, one-molecule deep layers parallel to (001) plane (Fig. 3). The motifs formed can be described, using graph set notations, as rings R24(8) and R24(11). It might be noted that for both alternatives the hydrogen atoms involved in these interactions are practically in the same positions. Each chloride anion accepts three hydrogen bonds, in flattened trigonal pyramid coordination. The layers in turn are loosely connected probably by electrostatic interactions between the charged species (Fig. 4).

Experimental

To a methanol solution (10 ml) of salicylaldehyde (0.043 ml, 0.4 mmol) a methanol solution (10 ml) of 1,2-diaminepropane (0.017 ml, 0.2 mmol) was added dropwise with stirring. After 5 minutes a methanol solution (20 ml) of ErCl3.6H2O (0.0764 g, 0.2 mmol) was added. The reaction was carried out at room temperature for 75 minutes. The solution volume was than reduced to 10 ml by roto-evaporation and after 7–14 days of slow diffusion of THF into the solution at 6 °C white crystals suitable for X-ray were formed.

Refinement

Hydrogen atoms were located geometrically (C(methyl)-H 0.98 Å, C2—H 1.00 Å, C3—H 0.99 Å, N—H 0.91 Å) and refined in a riding model approximation; the Uiso values of H atoms were set at 1.2 (1.5 for CH3 and NH3 groups) times Ueq of their carrier atom.

Figures

Fig. 1.

Fig. 1.

Anisotropic ellipsoid representation of I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii; hydrogen bonds are shown as dashed lines. Only major part of the disordered cation is shown.

Fig. 2.

Fig. 2.

The disordered cation in I: the major part is drawn with solid lines, the minor one - with open lines.

Fig. 3.

Fig. 3.

The single layer as seen along direction [100]. Only the cations of major part are shown. Hydrogen bonds are depicted as dashed lines.

Fig. 4.

Fig. 4.

The crystal packing as seen along direction [001]. Only the cations of major part are shown. Hydrogen bonds are depicted as dashed lines.

Crystal data

C3H12N22+·2Cl F(000) = 312
Mr = 147.05 Dx = 1.295 Mg m3
Orthorhombic, Pna21 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2n Cell parameters from 2191 reflections
a = 10.985 (3) Å θ = 4.0–75.5°
b = 7.079 (2) Å µ = 6.95 mm1
c = 9.698 (2) Å T = 120 K
V = 754.1 (3) Å3 Block, colourless
Z = 4 0.25 × 0.1 × 0.05 mm

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 1306 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1265 reflections with I > 2σ(I)
graphite Rint = 0.032
Detector resolution: 16.1544 pixels mm-1 θmax = 75.7°, θmin = 7.4°
ω scans h = −12→13
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −8→8
Tmin = 0.640, Tmax = 1.000 l = −11→12
2817 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.1755P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max = 0.001
1306 reflections Δρmax = 0.33 e Å3
86 parameters Δρmin = −0.34 e Å3
1 restraint Absolute structure: Flack (1983), 473 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.09 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.2839 (2) 0.7068 (3) 0.5952 (3) 0.0290 (5)
H1A 0.2462 0.7953 0.5422 0.043* 0.525 (13)
H1B 0.2269 0.6348 0.6386 0.043* 0.525 (13)
H1C 0.3313 0.7653 0.6592 0.043* 0.525 (13)
H1D 0.2547 0.8030 0.5424 0.043* 0.475 (13)
H1E 0.2252 0.6685 0.6552 0.043* 0.475 (13)
H1F 0.3501 0.7474 0.6432 0.043* 0.475 (13)
C2 0.3589 (9) 0.5771 (12) 0.5034 (11) 0.027 (2) 0.525 (13)
H2 0.4390 0.6396 0.4858 0.032* 0.525 (13)
C21 0.2954 (9) 0.5541 (8) 0.3682 (7) 0.034 (2) 0.525 (13)
H21A 0.2133 0.5043 0.3838 0.051* 0.525 (13)
H21B 0.3412 0.4660 0.3101 0.051* 0.525 (13)
H21C 0.2899 0.6769 0.3219 0.051* 0.525 (13)
C2A 0.3142 (10) 0.5396 (15) 0.5026 (12) 0.027 (2) 0.475 (13)
H2A 0.2358 0.4795 0.4737 0.032* 0.475 (13)
C21A 0.3753 (8) 0.6147 (11) 0.3760 (8) 0.035 (2) 0.475 (13)
H21D 0.4024 0.5091 0.3184 0.052* 0.475 (13)
H21E 0.4458 0.6913 0.4028 0.052* 0.475 (13)
H21F 0.3178 0.6929 0.3241 0.052* 0.475 (13)
C3 0.3821 (3) 0.4007 (4) 0.5893 (4) 0.0328 (7)
H3A 0.3024 0.3566 0.6246 0.039* 0.525 (13)
H3B 0.4341 0.4308 0.6697 0.039* 0.525 (13)
H3C 0.4454 0.4649 0.6448 0.039* 0.475 (13)
H3D 0.3222 0.3452 0.6540 0.039* 0.475 (13)
N4 0.4396 (2) 0.2468 (3) 0.5090 (3) 0.0253 (5)
H4A 0.5061 0.2925 0.4640 0.038*
H4B 0.3854 0.2007 0.4466 0.038*
H4C 0.4629 0.1526 0.5672 0.038*
Cl1 0.18604 (6) 0.05885 (8) 0.42805 (6) 0.0279 (2)
Cl2 0.52155 (6) 0.91848 (8) 0.70308 (9) 0.0328 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0357 (13) 0.0183 (12) 0.0329 (12) 0.0056 (9) 0.0017 (10) −0.0040 (9)
C2 0.036 (5) 0.009 (4) 0.035 (4) 0.005 (3) −0.003 (4) 0.000 (3)
C21 0.053 (5) 0.015 (3) 0.034 (4) 0.007 (3) −0.014 (3) 0.002 (2)
C2A 0.033 (5) 0.014 (5) 0.033 (4) 0.004 (4) 0.009 (4) −0.002 (3)
C21A 0.049 (5) 0.022 (3) 0.033 (3) 0.015 (3) 0.008 (3) 0.011 (3)
C3 0.0530 (18) 0.0185 (13) 0.0269 (14) 0.0108 (12) 0.0001 (13) 0.0005 (10)
N4 0.0319 (12) 0.0141 (11) 0.0298 (12) 0.0028 (9) −0.0006 (9) −0.0012 (8)
Cl1 0.0323 (3) 0.0199 (3) 0.0314 (3) 0.0026 (2) −0.0011 (3) −0.0003 (2)
Cl2 0.0350 (4) 0.0252 (3) 0.0383 (4) −0.0001 (2) −0.0050 (3) 0.0103 (3)

Geometric parameters (Å, °)

N1—C2 1.522 (10) C2A—C3 1.493 (12)
N1—C2A 1.523 (10) C2A—C21A 1.496 (14)
N1—H1A 0.9100 C2A—H2A 1.0000
N1—H1B 0.9100 C21A—H21D 0.9800
N1—H1C 0.9101 C21A—H21E 0.9800
N1—H1D 0.9101 C21A—H21F 0.9800
N1—H1E 0.9100 C3—N4 1.481 (4)
N1—H1F 0.9100 C3—H3A 0.9900
C2—C21 1.495 (13) C3—H3B 0.9900
C2—C3 1.523 (10) C3—H3C 0.9900
C2—H2 1.0000 C3—H3D 0.9899
C21—H21A 0.9800 N4—H4A 0.9100
C21—H21B 0.9800 N4—H4B 0.9100
C21—H21C 0.9800 N4—H4C 0.9100
C2—N1—H1A 109.3 C2A—C21A—H21D 109.5
C2A—N1—H1A 107.5 C2A—C21A—H21E 109.5
C2—N1—H1B 107.7 H21D—C21A—H21E 109.5
C2A—N1—H1B 89.3 C2A—C21A—H21F 109.5
H1A—N1—H1B 109.5 H21D—C21A—H21F 109.5
C2—N1—H1C 111.3 H21E—C21A—H21F 109.5
C2A—N1—H1C 129.1 N4—C3—C2A 113.7 (5)
H1A—N1—H1C 109.5 N4—C3—C2 112.8 (4)
H1B—N1—H1C 109.5 N4—C3—H3A 109.1
C2A—N1—H1D 109.0 C2A—C3—H3A 87.7
C2A—N1—H1E 107.5 C2—C3—H3A 107.4
H1D—N1—H1E 109.5 N4—C3—H3B 109.0
C2A—N1—H1F 111.9 C2A—C3—H3B 126.1
H1D—N1—H1F 109.5 C2—C3—H3B 110.5
H1E—N1—H1F 109.5 H3A—C3—H3B 107.8
C21—C2—N1 109.0 (7) N4—C3—H3C 108.8
C21—C2—C3 118.0 (7) C2A—C3—H3C 110.7
N1—C2—C3 105.4 (7) N4—C3—H3D 109.0
C21—C2—H2 108.0 C2A—C3—H3D 106.6
N1—C2—H2 108.0 H3C—C3—H3D 107.7
C3—C2—H2 108.0 C3—N4—H4A 109.5
C3—C2A—C21A 118.2 (8) C3—N4—H4B 109.5
C3—C2A—N1 106.8 (7) H4A—N4—H4B 109.5
C21A—C2A—N1 107.8 (8) C3—N4—H4C 109.5
C3—C2A—H2A 107.9 H4A—N4—H4C 109.5
C21A—C2A—H2A 107.9 H4B—N4—H4C 109.5
N1—C2A—H2A 107.9
C2A—N1—C2—C21 54.9 (18) C21A—C2A—C3—C2 45.2 (16)
C2A—N1—C2—C3 −72.6 (19) N1—C2A—C3—C2 −76.3 (19)
C2—N1—C2A—C3 78.5 (19) C21—C2—C3—N4 50.0 (10)
C2—N1—C2A—C21A −49.4 (17) N1—C2—C3—N4 172.0 (4)
C21A—C2A—C3—N4 −47.0 (11) C21—C2—C3—C2A −47.0 (17)
N1—C2A—C3—N4 −168.5 (4) N1—C2—C3—C2A 74.9 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1D···Cl1i 0.91 2.25 3.161 (3) 175
N1—H1E···Cl2ii 0.91 2.37 3.192 (3) 151
N1—H1F···Cl2 0.91 2.31 3.187 (3) 161
N4—H4B···Cl1 0.91 2.42 3.186 (3) 142
N4—H4A···Cl1iii 0.91 2.27 3.136 (3) 160
N4—H4C···Cl2iv 0.91 2.21 3.123 (2) 178

Symmetry codes: (i) x, y+1, z; (ii) x−1/2, −y+3/2, z; (iii) x+1/2, −y+1/2, z; (iv) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5036).

References

  1. Aghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, o1045–o1046. [DOI] [PMC free article] [PubMed]
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Gerrard, L. A. & Weller, M. T. (2002). Acta Cryst. C58, m504–m505. [DOI] [PubMed]
  5. Hosseinkhani, H., Azzam, T., Tabata, Y. & Domb, A. J. (2004). Gene Ther. 11, 194–203. [DOI] [PubMed]
  6. Itaka, K., Ishii, T., Hasegawa, Y. & Kataoka, K. (2010). Biomaterials, 31, 3707–3714. [DOI] [PubMed]
  7. Lee, C. & Harrison, W. T. A. (2003). Acta Cryst. E59, m739–m741.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  10. Pospieszna-Markiewicz, I., Radecka-Paryzek, W. & Kubicki, M. (2006). Acta Cryst. C62, o399–o401. [DOI] [PubMed]
  11. Pospieszna-Markiewicz, I., Radecka-Paryzek, W. & Kubicki, M. (2007). Acta Cryst. E63, o3650. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m2026–m2028.
  14. Ziebarth, J. & Wang, Y. (2009). Biophys. J. 97, 1971–1983. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001036/cv5036sup1.cif

e-67-0o371-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001036/cv5036Isup2.hkl

e-67-0o371-Isup2.hkl (63.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES