Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):o380–o381. doi: 10.1107/S1600536810052839

1,1′-[4-(2,4-Dichloro­phen­yl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­yl]diethanone

J Kalyana Sundar a, B Palakshi Reddy b, V Vijayakumar b, S Natarajan a, J Suresh c, P L Nilantha Lakshman d,*
PMCID: PMC3051630  PMID: 21523057

Abstract

In the title compound, C17H17Cl2NO2, the central 1,4-dihydro­pyridine ring adopts a flattened-boat conformation. The ethanone substituents of the dihydro­pyridine ring at positions 3 and 5 have synperiplanar (cis) or anti­periplanar (trans) conformations with respect to the adjacent C=C bonds in the dihydro­pyridine ring. The 2,4-dichloro­phenyl ring is almost planar [r.m.s. deviation = 0.0045 (1) Å] and almost perpendicular [89.27 (3)°] to the mean plane of the dihydro­pyridine ring. In the crystal, an N—H⋯O hydrogen bond links mol­ecules into a zigzag chain along the ac diagonal. C—H⋯Cl contacts form centrosymmetric dimers and additional weak C—H⋯O contacts further consolidate the packing.

Related literature

For background to the pharmaceutical applications of 1,4-dihydro­pyridine derivatives, see: Rose (1989, 1990); Salehi & Guo (2004). For structure–activity relationships among 1,4-dihydro­pyridines, see: Triggle et al. (1980); Janis & Triggle (1984); Langs & Triggle (1985).graphic file with name e-67-0o380-scheme1.jpg

Experimental

Crystal data

  • C17H17Cl2NO2

  • M r = 338.22

  • Monoclinic, Inline graphic

  • a = 10.307 (4) Å

  • b = 13.745 (3) Å

  • c = 11.312 (2) Å

  • β = 93.80 (2)°

  • V = 1599.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.18 mm

Data collection

  • Nonius MACH3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.910, T max = 0.929

  • 3247 measured reflections

  • 2811 independent reflections

  • 2265 reflections with I > 2σ(I)

  • R int = 0.014

  • 3 standard reflections every 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.096

  • S = 1.05

  • 2811 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810052839/sj5076sup1.cif

e-67-0o380-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052839/sj5076Isup2.hkl

e-67-0o380-Isup2.hkl (138KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.81 (2) 2.16 (2) 2.951 (2) 163 (2)
C8—H8B⋯O2ii 0.96 2.56 3.397 (3) 147
C10—H10C⋯O2ii 0.96 2.43 3.341 (3) 158
C17—H17⋯Cl2iii 0.93 (1) 2.92 (1) 3.796 (2) 158 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

JK thanks the UGC for the RFSMS fellowship. SN thanks the CSIR for funding provided under the Emeritus Scientist Scheme. VV is grateful to the DST–India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

1,4-Dihydropyridine derivatives have yielded many drugs which act as calcium channel agonists or antagonists (Rose, 1989, 1990) and various bioactive compounds such as vasodilator, antiatherosclerotic, antitumor, geroprotective, heptaprotective and antidiabetic agents (Salehi & Guo, 2004). Triggle and co-workers (Triggle et al., 1980; Janis & Triggle, 1984; Langs & Triggle, 1985) have identified some important structural requirements for biological activity. We have studied the crystal structure of 1,1'-[4-(2,4-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine- 3,5-diyl]diethanone.

In the title compound (I)(Fig. 1), C17H17Cl2NO2, the central 1, 4-dihydropyridine ring adopts a flattened boat conformation. The ethanone substituents of the dihydropyridine ring at positions 3 and 5 have different (cis/trans) configurations with respect to the double bonds in the pyridine ring. Each group is oriented in a synperiplanar (cis) or antiperiplanar (trans) conformation with respect to the adjacent C═ C in the dihydropyridine ring, which is evident from the torsion angles of C6—C5—C11—O2 [31.44 (40)°] and C2—C3—C9—O1 [172.43 (20)°], respectively.

The methyl groups attached at C2 and C6 positions of the pyridine ring adopt equatorial orientation as can be seen from the torsion angles [C7—C6—N1—C2] 165.54 (20)° and [C8—C2—N1—C6] -164.62 (20)°. The 2,4-dichlorophenyl ring is planar and almost perpendicular to the mean plane of the dihydropyridine ring with the plane angle: 89.27 (3)°. This close to perpendicular orientation of the dichlorophenyl ring to the dihydropyridine ring can be ascribed to the greater steric hinderance with the two ethanone groups at C3 and C5. Atom N1(x,y,z) of the pyridine ring make a intermolecular hydrogen bond with the atom O1(-1/2 + x, 1/2 + y, -1/2 + z), leading to a zigzag chain running along the diagonal of the ac - plane (Fig. 2). C17—H17···Cl2 contacts form centrosymmetric dimers and additional weak C—H···O contacts further stabilise the structure, Table 1.

Experimental

2,4,dicholrobenzaldehyde (10 mmol), acetylacetone (20 mmol) and ammonium acetate (10 mmol) in ethanol were heated on a steam bath until the color of the solution changed to reddish-orange. The mixture was cooled in ice to yield a solid product, which was extracted using diethylether. The purity of the crude product was checked through TLC and recrystallized from acetone/ether 1:1 [yield: 60%, m.p. 218–220°C].

Refinement

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.97 Å, and Uiso = 1.2Ueq(C) for CH2 and CH groups and Uiso = 1.5Ueq(C) for CH3 group. The N-bound H atom is located in a difference Fourier map and its positional parameters were refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

Packing of the crystal structre (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C17H17Cl2NO2 F(000) = 704
Mr = 338.22 Dx = 1.405 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 10.307 (4) Å θ = 2–25°
b = 13.745 (3) Å µ = 0.41 mm1
c = 11.312 (2) Å T = 293 K
β = 93.80 (2)° Block, colourless
V = 1599.0 (8) Å3 0.23 × 0.21 × 0.18 mm
Z = 4

Data collection

Nonius MACH3 diffractometer 2265 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.014
graphite θmax = 25.0°, θmin = 2.3°
ω–2θ scans h = 0→12
Absorption correction: ψ scan (North et al., 1968) k = −1→16
Tmin = 0.910, Tmax = 0.929 l = −13→13
3247 measured reflections 3 standard reflections every 60 min
2811 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.6776P] where P = (Fo2 + 2Fc2)/3
2811 reflections (Δ/σ)max < 0.001
207 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.09331 (17) 0.23909 (14) 0.35680 (16) 0.0368 (4)
C3 0.21210 (16) 0.23609 (13) 0.41766 (15) 0.0333 (4)
C4 0.32545 (16) 0.18638 (13) 0.36213 (15) 0.0325 (4)
H4 0.3770 0.1517 0.4247 0.039*
C5 0.27979 (18) 0.11313 (13) 0.26722 (15) 0.0371 (4)
C6 0.16077 (19) 0.12296 (14) 0.21010 (16) 0.0405 (4)
C7 0.1058 (2) 0.06292 (16) 0.1077 (2) 0.0573 (6)
H7A 0.0130 0.0706 0.0998 0.069*
H7B 0.1267 −0.0043 0.1216 0.069*
H7C 0.1424 0.0841 0.0362 0.069*
C8 −0.02898 (18) 0.28757 (18) 0.3917 (2) 0.0536 (6)
H8A −0.0961 0.2797 0.3295 0.064*
H8B −0.0128 0.3556 0.4050 0.064*
H8C −0.0562 0.2584 0.4631 0.064*
C9 0.24581 (18) 0.28036 (14) 0.53385 (16) 0.0388 (4)
C10 0.1592 (2) 0.34902 (17) 0.59460 (18) 0.0538 (6)
H10A 0.2028 0.3711 0.6673 0.065*
H10B 0.0803 0.3162 0.6114 0.065*
H10C 0.1390 0.4038 0.5440 0.065*
C11 0.3678 (2) 0.03428 (15) 0.23582 (19) 0.0485 (5)
C12 0.4571 (3) −0.00851 (18) 0.3312 (2) 0.0695 (7)
H12A 0.4768 −0.0745 0.3114 0.083*
H12B 0.4159 −0.0072 0.4049 0.083*
H12C 0.5360 0.0287 0.3389 0.083*
C13 0.41271 (16) 0.26267 (13) 0.30834 (15) 0.0313 (4)
C14 0.54362 (16) 0.27779 (13) 0.34248 (15) 0.0348 (4)
C15 0.61739 (18) 0.34868 (15) 0.29079 (17) 0.0422 (5)
H15 0.7041 0.3580 0.3166 0.051*
C16 0.56114 (19) 0.40453 (15) 0.20163 (17) 0.0446 (5)
C17 0.4322 (2) 0.39221 (15) 0.16311 (17) 0.0457 (5)
H17 0.3943 0.4302 0.1022 0.055*
C18 0.36099 (18) 0.32216 (14) 0.21721 (16) 0.0394 (4)
H18 0.2740 0.3142 0.1916 0.047*
Cl1 0.62411 (4) 0.20669 (4) 0.45204 (5) 0.05059 (17)
Cl2 0.65383 (6) 0.49418 (5) 0.13777 (6) 0.0727 (2)
N1 0.07592 (16) 0.19087 (13) 0.25047 (15) 0.0438 (4)
O1 0.35315 (14) 0.26245 (14) 0.58271 (14) 0.0638 (5)
O2 0.3688 (2) 0.00154 (15) 0.13564 (16) 0.0885 (7)
H1 0.006 (2) 0.1959 (17) 0.213 (2) 0.053 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0286 (9) 0.0424 (10) 0.0386 (10) −0.0049 (8) −0.0028 (7) 0.0092 (8)
C3 0.0286 (9) 0.0395 (10) 0.0314 (9) −0.0029 (7) −0.0007 (7) 0.0038 (7)
C4 0.0304 (9) 0.0363 (9) 0.0297 (9) −0.0005 (7) −0.0065 (7) 0.0013 (7)
C5 0.0417 (10) 0.0348 (10) 0.0339 (9) −0.0050 (8) −0.0049 (8) 0.0011 (8)
C6 0.0483 (11) 0.0366 (10) 0.0351 (10) −0.0091 (9) −0.0095 (8) 0.0048 (8)
C7 0.0707 (15) 0.0496 (13) 0.0480 (12) −0.0153 (11) −0.0231 (11) −0.0001 (10)
C8 0.0283 (10) 0.0693 (15) 0.0624 (13) 0.0005 (10) −0.0016 (9) 0.0081 (11)
C9 0.0347 (10) 0.0472 (11) 0.0345 (9) −0.0049 (8) 0.0019 (8) 0.0016 (8)
C10 0.0600 (13) 0.0636 (14) 0.0379 (11) 0.0095 (11) 0.0043 (9) −0.0027 (10)
C11 0.0546 (12) 0.0396 (11) 0.0503 (12) −0.0021 (9) −0.0034 (9) −0.0076 (9)
C12 0.0770 (17) 0.0506 (14) 0.0778 (17) 0.0214 (12) −0.0178 (14) −0.0106 (12)
C13 0.0282 (9) 0.0359 (9) 0.0295 (8) 0.0005 (7) −0.0009 (7) −0.0063 (7)
C14 0.0294 (9) 0.0392 (10) 0.0351 (9) 0.0036 (7) −0.0025 (7) −0.0043 (8)
C15 0.0290 (9) 0.0505 (12) 0.0469 (11) −0.0040 (8) 0.0010 (8) −0.0042 (9)
C16 0.0454 (11) 0.0459 (11) 0.0431 (11) −0.0097 (9) 0.0076 (9) −0.0009 (9)
C17 0.0492 (11) 0.0492 (12) 0.0377 (10) −0.0045 (9) −0.0051 (9) 0.0058 (9)
C18 0.0333 (9) 0.0474 (11) 0.0365 (10) −0.0038 (8) −0.0060 (8) −0.0003 (8)
Cl1 0.0328 (3) 0.0580 (3) 0.0589 (3) 0.0034 (2) −0.0119 (2) 0.0099 (2)
Cl2 0.0696 (4) 0.0779 (5) 0.0706 (4) −0.0307 (3) 0.0044 (3) 0.0198 (3)
N1 0.0329 (9) 0.0529 (10) 0.0431 (9) −0.0060 (7) −0.0163 (7) 0.0043 (8)
O1 0.0408 (8) 0.0997 (13) 0.0485 (9) 0.0097 (8) −0.0152 (7) −0.0258 (9)
O2 0.1091 (16) 0.0922 (15) 0.0621 (11) 0.0329 (12) −0.0095 (10) −0.0350 (10)

Geometric parameters (Å, °)

C2—C3 1.365 (2) C10—H10A 0.9600
C2—N1 1.375 (3) C10—H10B 0.9600
C2—C8 1.502 (3) C10—H10C 0.9600
C3—C9 1.469 (3) C11—O2 1.220 (3)
C3—C4 1.524 (2) C11—C12 1.492 (3)
C4—C5 1.524 (2) C12—H12A 0.9600
C4—C13 1.533 (2) C12—H12B 0.9600
C4—H4 0.9800 C12—H12C 0.9600
C5—C6 1.355 (3) C13—C18 1.394 (3)
C5—C11 1.472 (3) C13—C14 1.394 (2)
C6—N1 1.378 (3) C14—C15 1.389 (3)
C6—C7 1.503 (3) C14—Cl1 1.7444 (18)
C7—H7A 0.9600 C15—C16 1.366 (3)
C7—H7B 0.9600 C15—H15 0.9300
C7—H7C 0.9600 C16—C17 1.382 (3)
C8—H8A 0.9600 C16—Cl2 1.745 (2)
C8—H8B 0.9600 C17—C18 1.378 (3)
C8—H8C 0.9600 C17—H17 0.9300
C9—O1 1.228 (2) C18—H18 0.9300
C9—C10 1.497 (3) N1—H1 0.81 (2)
C3—C2—N1 119.17 (17) H10A—C10—H10B 109.5
C3—C2—C8 128.40 (18) C9—C10—H10C 109.5
N1—C2—C8 112.41 (16) H10A—C10—H10C 109.5
C2—C3—C9 126.14 (17) H10B—C10—H10C 109.5
C2—C3—C4 119.48 (16) O2—C11—C5 122.6 (2)
C9—C3—C4 114.33 (15) O2—C11—C12 118.9 (2)
C5—C4—C3 112.16 (14) C5—C11—C12 118.43 (18)
C5—C4—C13 109.52 (14) C11—C12—H12A 109.5
C3—C4—C13 110.04 (14) C11—C12—H12B 109.5
C5—C4—H4 108.3 H12A—C12—H12B 109.5
C3—C4—H4 108.3 C11—C12—H12C 109.5
C13—C4—H4 108.3 H12A—C12—H12C 109.5
C6—C5—C11 120.76 (17) H12B—C12—H12C 109.5
C6—C5—C4 119.86 (17) C18—C13—C14 115.67 (16)
C11—C5—C4 119.35 (16) C18—C13—C4 119.28 (15)
C5—C6—N1 118.96 (17) C14—C13—C4 125.05 (16)
C5—C6—C7 126.61 (19) C15—C14—C13 122.33 (17)
N1—C6—C7 114.35 (18) C15—C14—Cl1 116.38 (13)
C6—C7—H7A 109.5 C13—C14—Cl1 121.28 (14)
C6—C7—H7B 109.5 C16—C15—C14 119.20 (17)
H7A—C7—H7B 109.5 C16—C15—H15 120.4
C6—C7—H7C 109.5 C14—C15—H15 120.4
H7A—C7—H7C 109.5 C15—C16—C17 121.10 (18)
H7B—C7—H7C 109.5 C15—C16—Cl2 119.04 (15)
C2—C8—H8A 109.5 C17—C16—Cl2 119.85 (16)
C2—C8—H8B 109.5 C18—C17—C16 118.35 (18)
H8A—C8—H8B 109.5 C18—C17—H17 120.8
C2—C8—H8C 109.5 C16—C17—H17 120.8
H8A—C8—H8C 109.5 C17—C18—C13 123.34 (17)
H8B—C8—H8C 109.5 C17—C18—H18 118.3
O1—C9—C3 118.17 (17) C13—C18—H18 118.3
O1—C9—C10 117.81 (17) C2—N1—C6 124.61 (16)
C3—C9—C10 123.98 (17) C2—N1—H1 118.2 (16)
C9—C10—H10A 109.5 C6—N1—H1 116.5 (16)
C9—C10—H10B 109.5
N1—C2—C3—C9 −177.66 (17) C4—C5—C11—C12 34.8 (3)
C8—C2—C3—C9 0.5 (3) C5—C4—C13—C18 62.3 (2)
N1—C2—C3—C4 4.8 (3) C3—C4—C13—C18 −61.4 (2)
C8—C2—C3—C4 −177.01 (18) C5—C4—C13—C14 −116.97 (18)
C2—C3—C4—C5 −22.3 (2) C3—C4—C13—C14 119.30 (18)
C9—C3—C4—C5 159.92 (15) C18—C13—C14—C15 1.2 (3)
C2—C3—C4—C13 99.89 (18) C4—C13—C14—C15 −179.54 (16)
C9—C3—C4—C13 −77.89 (18) C18—C13—C14—Cl1 −177.96 (13)
C3—C4—C5—C6 24.6 (2) C4—C13—C14—Cl1 1.3 (2)
C13—C4—C5—C6 −97.9 (2) C13—C14—C15—C16 −1.4 (3)
C3—C4—C5—C11 −157.55 (16) Cl1—C14—C15—C16 177.78 (15)
C13—C4—C5—C11 80.0 (2) C14—C15—C16—C17 0.6 (3)
C11—C5—C6—N1 173.01 (18) C14—C15—C16—Cl2 179.48 (15)
C4—C5—C6—N1 −9.1 (3) C15—C16—C17—C18 0.2 (3)
C11—C5—C6—C7 −3.6 (3) Cl2—C16—C17—C18 −178.61 (16)
C4—C5—C6—C7 174.23 (18) C16—C17—C18—C13 −0.4 (3)
C2—C3—C9—O1 172.37 (19) C14—C13—C18—C17 −0.3 (3)
C4—C3—C9—O1 −10.0 (3) C4—C13—C18—C17 −179.59 (18)
C2—C3—C9—C10 −10.0 (3) C3—C2—N1—C6 13.8 (3)
C4—C3—C9—C10 167.64 (18) C8—C2—N1—C6 −164.67 (18)
C6—C5—C11—O2 31.2 (3) C5—C6—N1—C2 −11.5 (3)
C4—C5—C11—O2 −146.6 (2) C7—C6—N1—C2 165.50 (18)
C6—C5—C11—C12 −147.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.81 (2) 2.16 (2) 2.951 (2) 163 (2)
C8—H8B···O2ii 0.96 2.56 3.397 (3) 147
C10—H10C···O2ii 0.96 2.43 3.341 (3) 158
C4—H4···Cl1 0.98 2.65 3.190 (2) 115
C17—H17···Cl2iii 0.93 (1) 2.92 (1) 3.796 (2) 158.(1)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5076).

References

  1. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  3. Janis, R. A. & Triggle, D. J. (1984). Drug Dev. Res. 4, 257–274.
  4. Langs, D. A. & Triggle, D. J. (1985). Mol. Pharmacol. 27, 544–548. [PubMed]
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Rose, U. (1989). Arzneim. Forsch. (Drug Res.), 39, 1393–1398.
  7. Rose, U. (1990). Arch. Pharm. (Weinheim), 323, 281–286. [DOI] [PubMed]
  8. Salehi, H. & Guo, Q. X. (2004). Synth. Commun. 34, 4349–4357.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Triggle, A. M., Shefter, E. & Triggle, D. J. (1980). J. Med. Chem. 23, 1442–1445. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810052839/sj5076sup1.cif

e-67-0o380-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052839/sj5076Isup2.hkl

e-67-0o380-Isup2.hkl (138KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES