Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):m193–m194. doi: 10.1107/S1600536810054371

Benzene-1,3-diammonium bis­(pyridine-2,6-dicarboxyl­ato)nickelate(II) penta­hydrate

Hoda Pasdar a, Saghi Sadat Kashani a,*, Hossein Aghabozorg a, Behrouz Notash b
PMCID: PMC3051631  PMID: 21522862

Abstract

In the title compound, (C6H10N2)[Ni(C7H3NO4)2]·5H2O, the NiII ion is six-coordinated by two N and four O atoms from two pyridine-2,6-dicarboxyl­ate ligands in a distorted octa­hedral fashion. The crystal packing is stabilized by inter­molecular O—H⋯O and N—H⋯O and weak C—H⋯O hydrogen bonds and π–π inter­actions [centroid–centroid distances = 3.4669 (19) and 3.764 (2) Å].

Related literature

For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For related structures, see: Aghabozorg et al. (2009); Beatty et al. (2002); Dobrzycki & Woźniak (2008); Attar Gharamaleki et al. (2009); Imaz et al. (2007); MacDon­ald et al. (2000, 2004); Sharif et al. (2007).graphic file with name e-67-0m193-scheme1.jpg

Experimental

Crystal data

  • (C6H10N2)[Ni(C7H3NO4)2]·5H2O

  • M r = 589.14

  • Monoclinic, Inline graphic

  • a = 7.5331 (15) Å

  • b = 18.085 (4) Å

  • c = 18.578 (4) Å

  • β = 100.90 (3)°

  • V = 2485.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie, 2005) T min = 0.855, T max = 0.920

  • 18439 measured reflections

  • 6687 independent reflections

  • 3608 reflections with I > 2σ(I)

  • R int = 0.090

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.086

  • S = 0.92

  • 6687 reflections

  • 407 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054371/bt5430sup1.cif

e-67-0m193-sup1.cif (26.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054371/bt5430Isup2.hkl

e-67-0m193-Isup2.hkl (327.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.93 2.48 3.118 (4) 126
C3—H3⋯O7ii 0.93 2.56 3.284 (4) 135
O13—H13B⋯O9iii 0.82 (5) 2.14 (5) 2.945 (6) 166 (5)
O13—H13A⋯O6iv 0.76 (4) 2.05 (4) 2.776 (5) 158 (6)
O12—H12B⋯O13v 0.79 (4) 2.02 (4) 2.808 (5) 176 (8)
O12—H12A⋯O3vi 0.89 (6) 1.95 (6) 2.838 (4) 174 (5)
O11—H11B⋯O9 0.75 (3) 2.08 (3) 2.829 (4) 173 (5)
O11—H11A⋯O7 0.79 (4) 2.03 (4) 2.798 (4) 163 (4)
O10—H10B⋯O2 0.97 (5) 1.80 (5) 2.750 (4) 168 (5)
O10—H10A⋯O12vii 0.79 (3) 2.20 (5) 2.880 (5) 146 (6)
O9—H9B⋯O4ii 0.85 (5) 2.07 (5) 2.918 (4) 172 (5)
O9—H9A⋯O10 0.86 (5) 1.91 (5) 2.772 (5) 176 (4)
N4—H4C⋯O6viii 0.97 (4) 1.78 (4) 2.730 (4) 167 (3)
N4—H4B⋯O4vi 0.82 (3) 2.05 (4) 2.854 (4) 168 (3)
N4—H4A⋯O11 0.91 (4) 1.94 (4) 2.842 (4) 173 (3)
N3—H3C⋯O1 0.91 (5) 1.82 (5) 2.702 (4) 164 (4)
N3—H3B⋯O8vii 0.93 (5) 1.85 (5) 2.773 (4) 173 (4)
N3—H3A⋯O12vii 0.91 (4) 2.07 (4) 2.899 (5) 152 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

The authors are grateful to the Islamic Azad University, North Branch, for financial support of this work.

supplementary crystallographic information

Comment

Pyridine-2,6-dicarboxylic acid (pydcH2) was commonly used as an acid in proton transfer systems (Aghabozorg et al. 2008). It has been reported that several proton transfer systems containing the anionic [Ni(pydc)2]2- moiety and different cationic parts (Aghabozorg et al. 2009; Attar Gharamaleki et al. 2009; MacDonald et al. 2000; MacDonald et al. 2004; Sharif et al. 2007). In addition, the formation of mono (Beatty et al. 2002) and diprotonated benzene-1,3-diamine (Dobrzycki & Woźniak 2008; Imaz et al. 2007) have been observed previously.

In the title compound, (bdaH2)[Ni(pydc)2].5H2O, the anionic part is comprised of a NiII ion which is six-coordinated by two pyridyl nitrogen and four oxygen atoms from pydc ligands. The Ni(II) ion has a distorted octahedral geometry. (Fig. 1). Bond lengths for Ni—O and Ni—N and angles (Table 1) are in normal ranges (Aghabozorg et al. 2009; Attar Gharamaleki et al. 2009; Sharif et al. 2007). Crystal packing is stabilized by intermolecular O—H···O, N—H···O and weak C—H···O intermolecular hydrogen bonds which formed between [Ni(pydc)2]2-, (bdaH2)2+ and water molecules (Fig. 2 & Table 2). There are also π-π interactions between pyridine rings of pydc and between benzene ring of (bdaH2)2+ and pyridine ring of pydc molecule by distances Cg5···Cg5ix and Cg6···Cg7 of 3.4669 (19) and 3.764 (2) Å, respectively. [Cg5, Cg6 and Cg7 are centroids of N1/C1—C6, N2/C8—C12 and C15—C20 rings, respectively. Symmetry code: (ix) 1 - x,2 - y,2 - z]. Intermolecular π-π interactions are shown in Fig. 3.

Experimental

A solution of pyridine-2,6-dicarboxylic acid (pydcH2) (162 mg, 0.9 mmol) in 15 ml water was added to a solution of benzene-1,3-diamine (bda) (108 mg, 0.6 mmol) in 12 ml water and stirred for half an hour. Then a solution of NiCl2.6H2O (7 mg, 0.7 mmol) in 5 ml water was added to the solution of pydcH2 and bda. The resulted solution was stirred for 2 hrs and green crystals of the title compound were obtained after one week which were suitable for X-ray analysis (m.p 200°C).

Refinement

The hydrogen atoms of the water molecules and of the diammonium groups were found in a difference Fourier map and refined isotropically. The O—H bonds to H10A, H11B, H12B and H13A were refined with a distance restraint of 0.82 (4) Å. The C—H protons were positioned geometrically and refined as riding atoms with C–H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the a-axis. The intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds are shown as blue dashed lines.

Fig. 3.

Fig. 3.

Packing diagram of the title compound viewed down the a-axis showing intermolecular π-π interactions (dashed lines). Hydrogen atoms and water molecules have been omitted for clarity.

Crystal data

(C6H10N2)[Ni(C7H3NO4)2]·5H2O F(000) = 1224.0
Mr = 589.14 Dx = 1.574 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6687 reflections
a = 7.5331 (15) Å θ = 2.2–29.2°
b = 18.085 (4) Å µ = 0.86 mm1
c = 18.578 (4) Å T = 298 K
β = 100.90 (3)° Needle, green
V = 2485.3 (9) Å3 0.2 × 0.15 × 0.1 mm
Z = 4

Data collection

Stoe IPDS II diffractometer 6687 independent reflections
Radiation source: fine-focus sealed tube 3608 reflections with I > 2σ(I)
graphite Rint = 0.090
Detector resolution: 0.15 mm pixels mm-1 θmax = 29.2°, θmin = 2.2°
rotation method scans h = −10→9
Absorption correction: numerical [shape of crystal determined optically (X-RED and X-SHAPE (Stoe & Cie, 2005)] k = −24→24
Tmin = 0.855, Tmax = 0.920 l = −25→25
18439 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0238P)2] where P = (Fo2 + 2Fc2)/3
6687 reflections (Δ/σ)max = 0.001
407 parameters Δρmax = 0.39 e Å3
4 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O12 0.0352 (4) 0.65115 (16) 0.82305 (17) 0.0522 (8)
Ni1 0.64385 (6) 0.98344 (2) 0.81233 (2) 0.02316 (10)
N1 0.6858 (3) 1.00256 (12) 0.91843 (12) 0.0203 (5)
N2 0.6146 (3) 0.96578 (13) 0.70636 (12) 0.0225 (6)
O7 0.4041 (3) 0.91734 (12) 0.79023 (11) 0.0312 (5)
O3 0.4988 (3) 1.08346 (11) 0.81671 (11) 0.0305 (5)
O5 0.8722 (3) 1.03845 (12) 0.78742 (11) 0.0368 (6)
C11 0.7284 (5) 0.97699 (19) 0.59762 (16) 0.0354 (8)
H11 0.8166 0.9944 0.5730 0.042*
C12 0.7401 (4) 0.99113 (17) 0.67087 (15) 0.0262 (7)
O1 0.8002 (3) 0.89096 (11) 0.85564 (11) 0.0315 (5)
C1 0.7845 (4) 0.95527 (15) 0.96399 (15) 0.0200 (6)
C5 0.6176 (4) 1.06446 (15) 0.94246 (15) 0.0227 (7)
N3 0.9677 (4) 0.80203 (19) 0.77250 (17) 0.0290 (6)
C3 0.7580 (4) 1.03320 (17) 1.06483 (16) 0.0277 (7)
H3 0.7827 1.0437 1.1147 0.033*
C4 0.6531 (4) 1.08166 (17) 1.01596 (16) 0.0275 (7)
H4 0.6078 1.1249 1.0328 0.033*
C2 0.8252 (4) 0.96944 (16) 1.03883 (15) 0.0272 (7)
H2 0.8960 0.9368 1.0707 0.033*
C8 0.4727 (4) 0.92723 (16) 0.67186 (16) 0.0255 (7)
C15 0.8119 (4) 0.77521 (16) 0.71966 (16) 0.0241 (7)
C7 0.5013 (4) 1.10803 (16) 0.88110 (17) 0.0256 (7)
C20 0.6666 (4) 0.74641 (17) 0.74619 (17) 0.0261 (7)
H20 0.6665 0.7454 0.7962 0.031*
C16 0.8142 (4) 0.77784 (17) 0.64577 (17) 0.0289 (7)
H16 0.9119 0.7982 0.6287 0.035*
O4 0.4185 (3) 1.16332 (11) 0.89702 (12) 0.0322 (5)
O2 0.9292 (4) 0.83930 (13) 0.96180 (12) 0.0431 (6)
O8 0.2157 (3) 0.86339 (14) 0.69685 (13) 0.0467 (7)
O6 1.0038 (3) 1.06724 (13) 0.69308 (13) 0.0468 (7)
C19 0.5220 (4) 0.71920 (16) 0.69634 (16) 0.0238 (7)
N4 0.3701 (4) 0.68770 (17) 0.72430 (17) 0.0275 (6)
C18 0.5215 (4) 0.72028 (17) 0.62201 (17) 0.0303 (8)
H18 0.4235 0.7015 0.5890 0.036*
C6 0.8438 (4) 0.88880 (17) 0.92559 (16) 0.0266 (7)
C14 0.8847 (4) 1.03584 (17) 0.72077 (17) 0.0311 (8)
C17 0.6668 (5) 0.74933 (19) 0.59727 (17) 0.0369 (8)
H17 0.6669 0.7500 0.5472 0.044*
C9 0.4516 (5) 0.91218 (18) 0.59783 (17) 0.0334 (8)
H9 0.3513 0.8863 0.5734 0.040*
C10 0.5841 (5) 0.93673 (19) 0.56106 (18) 0.0394 (9)
H10 0.5756 0.9260 0.5116 0.047*
C13 0.3517 (4) 0.90100 (17) 0.72284 (16) 0.0271 (7)
O11 0.3389 (4) 0.77842 (17) 0.84618 (15) 0.0402 (7)
O9 0.5261 (5) 0.72860 (19) 0.98420 (18) 0.0583 (9)
O10 0.8429 (5) 0.6926 (2) 0.93695 (19) 0.0649 (9)
O13 0.8277 (5) 0.9051 (2) 0.4247 (2) 0.0646 (9)
H11A 0.360 (6) 0.820 (2) 0.839 (2) 0.057 (15)*
H11B 0.381 (6) 0.765 (2) 0.8838 (19) 0.062 (15)*
H12B 0.114 (8) 0.633 (4) 0.852 (3) 0.15 (3)*
H13A 0.879 (7) 0.923 (3) 0.398 (3) 0.11 (3)*
H12A 0.025 (7) 0.627 (3) 0.781 (3) 0.103 (19)*
H9B 0.552 (7) 0.761 (3) 1.018 (3) 0.09 (2)*
H9A 0.628 (7) 0.718 (2) 0.972 (2) 0.067 (17)*
H10A 0.857 (8) 0.670 (3) 0.902 (2) 0.10 (2)*
H13B 0.894 (7) 0.873 (3) 0.446 (3) 0.08 (2)*
H10B 0.882 (7) 0.744 (3) 0.940 (3) 0.095 (18)*
H3A 1.023 (6) 0.763 (2) 0.797 (2) 0.063 (14)*
H3B 1.051 (6) 0.826 (2) 0.750 (2) 0.056 (13)*
H3C 0.932 (6) 0.834 (2) 0.805 (2) 0.061 (13)*
H4C 0.398 (5) 0.641 (2) 0.750 (2) 0.054 (12)*
H4A 0.351 (5) 0.716 (2) 0.763 (2) 0.045 (11)*
H4B 0.279 (5) 0.6851 (18) 0.6925 (19) 0.034 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O12 0.064 (2) 0.0460 (17) 0.0440 (17) 0.0030 (15) 0.0021 (16) −0.0136 (14)
Ni1 0.0261 (2) 0.02501 (18) 0.01821 (16) −0.0019 (2) 0.00388 (14) −0.00170 (18)
N1 0.0188 (12) 0.0206 (14) 0.0222 (12) −0.0019 (9) 0.0056 (10) −0.0015 (9)
N2 0.0244 (13) 0.0238 (14) 0.0202 (12) −0.0022 (10) 0.0065 (10) −0.0012 (10)
O7 0.0347 (13) 0.0370 (13) 0.0238 (11) −0.0078 (10) 0.0100 (10) −0.0045 (9)
O3 0.0346 (13) 0.0301 (12) 0.0247 (11) 0.0043 (10) 0.0004 (10) 0.0004 (9)
O5 0.0391 (14) 0.0434 (14) 0.0279 (11) −0.0156 (11) 0.0059 (10) −0.0076 (10)
C11 0.047 (2) 0.0370 (18) 0.0253 (15) −0.0073 (18) 0.0145 (14) −0.0003 (15)
C12 0.0315 (16) 0.0238 (16) 0.0247 (14) −0.0044 (14) 0.0087 (12) 0.0014 (13)
O1 0.0398 (14) 0.0310 (12) 0.0236 (11) 0.0110 (10) 0.0055 (10) −0.0036 (9)
C1 0.0137 (14) 0.0242 (15) 0.0232 (14) −0.0027 (12) 0.0065 (12) 0.0009 (12)
C5 0.0205 (15) 0.0215 (15) 0.0259 (15) −0.0013 (12) 0.0037 (13) 0.0000 (12)
N3 0.0201 (15) 0.0389 (18) 0.0281 (15) −0.0029 (14) 0.0049 (13) −0.0087 (14)
C3 0.0271 (16) 0.0371 (19) 0.0194 (14) −0.0066 (14) 0.0055 (13) −0.0057 (12)
C4 0.0247 (16) 0.0303 (17) 0.0298 (16) −0.0002 (13) 0.0108 (13) −0.0110 (13)
C2 0.0287 (16) 0.0288 (18) 0.0222 (14) −0.0009 (13) 0.0003 (13) 0.0027 (12)
C8 0.0308 (18) 0.0221 (15) 0.0228 (15) −0.0016 (13) 0.0033 (13) 0.0001 (12)
C15 0.0191 (15) 0.0245 (16) 0.0275 (16) 0.0021 (13) 0.0013 (13) −0.0072 (13)
C7 0.0231 (16) 0.0222 (16) 0.0300 (17) −0.0034 (13) 0.0012 (13) −0.0005 (13)
C20 0.0230 (16) 0.0331 (17) 0.0223 (15) −0.0011 (14) 0.0045 (13) −0.0028 (13)
C16 0.0272 (17) 0.0323 (18) 0.0291 (17) −0.0044 (14) 0.0102 (14) −0.0026 (14)
O4 0.0273 (12) 0.0288 (12) 0.0397 (13) 0.0071 (10) 0.0046 (10) −0.0025 (10)
O2 0.0580 (17) 0.0336 (13) 0.0354 (13) 0.0184 (12) 0.0028 (12) 0.0041 (10)
O8 0.0359 (15) 0.0651 (17) 0.0383 (14) −0.0234 (13) 0.0050 (12) −0.0055 (12)
O6 0.0472 (16) 0.0525 (16) 0.0451 (15) −0.0244 (13) 0.0199 (12) −0.0063 (12)
C19 0.0195 (15) 0.0224 (15) 0.0298 (16) 0.0021 (12) 0.0055 (13) −0.0021 (13)
N4 0.0202 (15) 0.0293 (16) 0.0323 (16) −0.0033 (12) 0.0029 (13) −0.0012 (13)
C18 0.0294 (18) 0.0313 (18) 0.0282 (16) −0.0047 (14) 0.0001 (14) −0.0062 (13)
C6 0.0266 (17) 0.0269 (17) 0.0266 (16) −0.0008 (14) 0.0056 (14) −0.0010 (13)
C14 0.0299 (18) 0.0325 (19) 0.0337 (17) −0.0066 (14) 0.0132 (14) −0.0037 (14)
C17 0.042 (2) 0.047 (2) 0.0215 (16) −0.0046 (17) 0.0054 (16) −0.0021 (15)
C9 0.036 (2) 0.0371 (19) 0.0248 (16) −0.0068 (15) 0.0012 (15) −0.0032 (14)
C10 0.054 (2) 0.044 (2) 0.0226 (17) −0.0075 (18) 0.0128 (16) −0.0024 (15)
C13 0.0239 (17) 0.0287 (17) 0.0299 (17) −0.0004 (14) 0.0082 (14) 0.0003 (13)
O11 0.0474 (17) 0.0362 (16) 0.0357 (16) −0.0017 (13) 0.0051 (13) 0.0008 (13)
O9 0.059 (2) 0.068 (2) 0.0464 (19) 0.0053 (18) 0.0066 (17) −0.0100 (16)
O10 0.077 (2) 0.058 (2) 0.063 (2) 0.0039 (18) 0.0247 (18) −0.0084 (18)
O13 0.060 (2) 0.082 (3) 0.059 (2) −0.001 (2) 0.0275 (19) 0.0045 (19)

Geometric parameters (Å, °)

O12—H12B 0.79 (4) C2—H2 0.9300
O12—H12A 0.89 (6) C8—C9 1.381 (4)
Ni1—N2 1.965 (2) C8—C13 1.510 (5)
Ni1—N1 1.967 (2) C15—C16 1.377 (4)
Ni1—O5 2.113 (2) C15—C20 1.384 (4)
Ni1—O1 2.115 (2) C7—O4 1.244 (4)
Ni1—O3 2.123 (2) C20—C19 1.380 (4)
Ni1—O7 2.140 (2) C20—H20 0.9300
N1—C1 1.328 (3) C16—C17 1.390 (4)
N1—C5 1.343 (4) C16—H16 0.9300
N2—C12 1.332 (4) O2—C6 1.226 (3)
N2—C8 1.334 (4) O8—C13 1.248 (4)
O7—C13 1.274 (3) O6—C14 1.251 (4)
O3—C7 1.273 (4) C19—C18 1.381 (4)
O5—C14 1.260 (4) C19—N4 1.459 (4)
C11—C12 1.371 (4) N4—H4C 0.97 (4)
C11—C10 1.376 (5) N4—H4A 0.91 (4)
C11—H11 0.9300 N4—H4B 0.82 (3)
C12—C14 1.522 (4) C18—C17 1.370 (5)
O1—C6 1.279 (3) C18—H18 0.9300
C1—C2 1.390 (4) C17—H17 0.9300
C1—C6 1.508 (4) C9—C10 1.385 (5)
C5—C4 1.376 (4) C9—H9 0.9300
C5—C7 1.520 (4) C10—H10 0.9300
N3—C15 1.463 (4) O11—H11A 0.79 (4)
N3—H3A 0.91 (4) O11—H11B 0.75 (3)
N3—H3B 0.93 (5) O9—H9B 0.85 (5)
N3—H3C 0.91 (5) O9—H9A 0.86 (5)
C3—C2 1.383 (4) O10—H10A 0.79 (3)
C3—C4 1.395 (4) O10—H10B 0.97 (5)
C3—H3 0.9300 O13—H13A 0.76 (4)
C4—H4 0.9300 O13—H13B 0.82 (5)
H12B—O12—H12A 109 (6) C3—C2—H2 120.7
N2—Ni1—N1 177.13 (11) C1—C2—H2 120.7
N2—Ni1—O5 78.39 (10) N2—C8—C9 120.8 (3)
N1—Ni1—O5 98.84 (9) N2—C8—C13 112.7 (3)
N2—Ni1—O1 101.62 (9) C9—C8—C13 126.4 (3)
N1—Ni1—O1 77.61 (9) C16—C15—C20 121.9 (3)
O5—Ni1—O1 92.17 (9) C16—C15—N3 119.8 (3)
N2—Ni1—O3 102.47 (9) C20—C15—N3 118.3 (3)
N1—Ni1—O3 78.34 (9) O4—C7—O3 125.8 (3)
O5—Ni1—O3 93.06 (9) O4—C7—C5 118.9 (3)
O1—Ni1—O3 155.91 (8) O3—C7—C5 115.3 (3)
N2—Ni1—O7 77.66 (10) C19—C20—C15 118.2 (3)
N1—Ni1—O7 105.08 (9) C19—C20—H20 120.9
O5—Ni1—O7 156.01 (8) C15—C20—H20 120.9
O1—Ni1—O7 91.16 (9) C15—C16—C17 118.3 (3)
O3—Ni1—O7 93.54 (9) C15—C16—H16 120.8
C1—N1—C5 121.9 (2) C17—C16—H16 120.8
C1—N1—Ni1 119.34 (19) C20—C19—C18 121.2 (3)
C5—N1—Ni1 118.74 (18) C20—C19—N4 118.2 (3)
C12—N2—C8 121.4 (3) C18—C19—N4 120.5 (3)
C12—N2—Ni1 118.97 (19) C19—N4—H4C 114 (2)
C8—N2—Ni1 119.6 (2) C19—N4—H4A 108 (2)
C13—O7—Ni1 114.3 (2) H4C—N4—H4A 99 (3)
C7—O3—Ni1 114.67 (18) C19—N4—H4B 112 (3)
C14—O5—Ni1 114.38 (19) H4C—N4—H4B 112 (3)
C12—C11—C10 119.0 (3) H4A—N4—H4B 111 (3)
C12—C11—H11 120.5 C17—C18—C19 119.3 (3)
C10—C11—H11 120.5 C17—C18—H18 120.3
N2—C12—C11 120.6 (3) C19—C18—H18 120.3
N2—C12—C14 112.0 (2) O2—C6—O1 125.9 (3)
C11—C12—C14 127.4 (3) O2—C6—C1 119.6 (3)
C6—O1—Ni1 115.35 (19) O1—C6—C1 114.5 (3)
N1—C1—C2 120.7 (3) O6—C14—O5 125.4 (3)
N1—C1—C6 113.1 (2) O6—C14—C12 118.5 (3)
C2—C1—C6 126.2 (3) O5—C14—C12 116.1 (3)
N1—C5—C4 120.3 (3) C18—C17—C16 121.1 (3)
N1—C5—C7 112.7 (2) C18—C17—H17 119.5
C4—C5—C7 127.1 (3) C16—C17—H17 119.5
C15—N3—H3A 108 (3) C8—C9—C10 118.0 (3)
C15—N3—H3B 112 (2) C8—C9—H9 121.0
H3A—N3—H3B 108 (4) C10—C9—H9 121.0
C15—N3—H3C 111 (3) C11—C10—C9 120.1 (3)
H3A—N3—H3C 109 (4) C11—C10—H10 119.9
H3B—N3—H3C 109 (4) C9—C10—H10 119.9
C2—C3—C4 119.8 (3) O8—C13—O7 125.8 (3)
C2—C3—H3 120.1 O8—C13—C8 118.5 (3)
C4—C3—H3 120.1 O7—C13—C8 115.6 (3)
C5—C4—C3 118.9 (3) H11A—O11—H11B 113 (4)
C5—C4—H4 120.6 H9B—O9—H9A 105 (5)
C3—C4—H4 120.6 H10A—O10—H10B 117 (6)
C3—C2—C1 118.5 (3) H13A—O13—H13B 106 (6)
N2—Ni1—N1—C1 −74 (2) Ni1—N1—C5—C4 −176.3 (2)
O5—Ni1—N1—C1 −89.1 (2) C1—N1—C5—C7 −177.0 (3)
O1—Ni1—N1—C1 1.2 (2) Ni1—N1—C5—C7 4.9 (3)
O3—Ni1—N1—C1 179.6 (2) N1—C5—C4—C3 −1.0 (5)
O7—Ni1—N1—C1 89.0 (2) C7—C5—C4—C3 177.5 (3)
N2—Ni1—N1—C5 104 (2) C2—C3—C4—C5 0.4 (5)
O5—Ni1—N1—C5 89.0 (2) C4—C3—C2—C1 −0.4 (5)
O1—Ni1—N1—C5 179.3 (2) N1—C1—C2—C3 1.1 (4)
O3—Ni1—N1—C5 −2.3 (2) C6—C1—C2—C3 −179.5 (3)
O7—Ni1—N1—C5 −92.9 (2) C12—N2—C8—C9 0.2 (4)
N1—Ni1—N2—C12 −14 (2) Ni1—N2—C8—C9 −178.1 (2)
O5—Ni1—N2—C12 2.1 (2) C12—N2—C8—C13 177.5 (3)
O1—Ni1—N2—C12 −87.8 (2) Ni1—N2—C8—C13 −0.8 (3)
O3—Ni1—N2—C12 92.7 (2) Ni1—O3—C7—O4 −176.1 (3)
O7—Ni1—N2—C12 −176.4 (2) Ni1—O3—C7—C5 4.0 (3)
N1—Ni1—N2—C8 164.8 (19) N1—C5—C7—O4 174.2 (3)
O5—Ni1—N2—C8 −179.6 (2) C4—C5—C7—O4 −4.4 (5)
O1—Ni1—N2—C8 90.5 (2) N1—C5—C7—O3 −5.9 (4)
O3—Ni1—N2—C8 −89.0 (2) C4—C5—C7—O3 175.5 (3)
O7—Ni1—N2—C8 1.9 (2) C16—C15—C20—C19 0.6 (5)
N2—Ni1—O7—C13 −2.9 (2) N3—C15—C20—C19 −178.2 (3)
N1—Ni1—O7—C13 178.0 (2) C20—C15—C16—C17 −1.2 (5)
O5—Ni1—O7—C13 −6.6 (3) N3—C15—C16—C17 177.6 (3)
O1—Ni1—O7—C13 −104.5 (2) C15—C20—C19—C18 0.2 (4)
O3—Ni1—O7—C13 99.1 (2) C15—C20—C19—N4 179.0 (3)
N2—Ni1—O3—C7 −178.4 (2) C20—C19—C18—C17 −0.4 (5)
N1—Ni1—O3—C7 −1.2 (2) N4—C19—C18—C17 −179.2 (3)
O5—Ni1—O3—C7 −99.6 (2) Ni1—O1—C6—O2 177.8 (3)
O1—Ni1—O3—C7 2.7 (4) Ni1—O1—C6—C1 −3.4 (3)
O7—Ni1—O3—C7 103.5 (2) N1—C1—C6—O2 −176.8 (3)
N2—Ni1—O5—C14 0.6 (2) C2—C1—C6—O2 3.7 (5)
N1—Ni1—O5—C14 179.8 (2) N1—C1—C6—O1 4.4 (4)
O1—Ni1—O5—C14 102.0 (2) C2—C1—C6—O1 −175.1 (3)
O3—Ni1—O5—C14 −101.6 (2) Ni1—O5—C14—O6 176.6 (3)
O7—Ni1—O5—C14 4.2 (4) Ni1—O5—C14—C12 −2.7 (3)
C8—N2—C12—C11 −1.2 (4) N2—C12—C14—O6 −175.0 (3)
Ni1—N2—C12—C11 177.1 (2) C11—C12—C14—O6 3.9 (5)
C8—N2—C12—C14 177.8 (3) N2—C12—C14—O5 4.3 (4)
Ni1—N2—C12—C14 −3.9 (3) C11—C12—C14—O5 −176.7 (3)
C10—C11—C12—N2 0.6 (5) C19—C18—C17—C16 −0.2 (5)
C10—C11—C12—C14 −178.3 (3) C15—C16—C17—C18 0.9 (5)
N2—Ni1—O1—C6 178.6 (2) N2—C8—C9—C10 1.5 (5)
N1—Ni1—O1—C6 1.5 (2) C13—C8—C9—C10 −175.4 (3)
O5—Ni1—O1—C6 100.0 (2) C12—C11—C10—C9 1.1 (5)
O3—Ni1—O1—C6 −2.4 (4) C8—C9—C10—C11 −2.1 (5)
O7—Ni1—O1—C6 −103.7 (2) Ni1—O7—C13—O8 −179.7 (3)
C5—N1—C1—C2 −1.8 (4) Ni1—O7—C13—C8 3.3 (3)
Ni1—N1—C1—C2 176.3 (2) N2—C8—C13—O8 −179.0 (3)
C5—N1—C1—C6 178.8 (3) C9—C8—C13—O8 −1.9 (5)
Ni1—N1—C1—C6 −3.2 (3) N2—C8—C13—O7 −1.8 (4)
C1—N1—C5—C4 1.7 (4) C9—C8—C13—O7 175.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C18—H18···O2i 0.93 2.48 3.118 (4) 126.
C3—H3···O7ii 0.93 2.56 3.284 (4) 135.
O13—H13B···O9iii 0.82 (5) 2.14 (5) 2.945 (6) 166 (5)
O13—H13A···O6iv 0.76 (4) 2.05 (4) 2.776 (5) 158 (6)
O12—H12B···O13v 0.79 (4) 2.02 (4) 2.808 (5) 176 (8)
O12—H12A···O3vi 0.89 (6) 1.95 (6) 2.838 (4) 174 (5)
O11—H11B···O9 0.75 (3) 2.08 (3) 2.829 (4) 173 (5)
O11—H11A···O7 0.79 (4) 2.03 (4) 2.798 (4) 163 (4)
O10—H10B···O2 0.97 (5) 1.80 (5) 2.750 (4) 168 (5)
O10—H10A···O12vii 0.79 (3) 2.20 (5) 2.880 (5) 146 (6)
O9—H9B···O4ii 0.85 (5) 2.07 (5) 2.918 (4) 172 (5)
O9—H9A···O10 0.86 (5) 1.91 (5) 2.772 (5) 176 (4)
N4—H4C···O6viii 0.97 (4) 1.78 (4) 2.730 (4) 167 (3)
N4—H4B···O4vi 0.82 (3) 2.05 (4) 2.854 (4) 168 (3)
N4—H4A···O11 0.91 (4) 1.94 (4) 2.842 (4) 173 (3)
N3—H3C···O1 0.91 (5) 1.82 (5) 2.702 (4) 164 (4)
N3—H3B···O8vii 0.93 (5) 1.85 (5) 2.773 (4) 173 (4)
N3—H3A···O12vii 0.91 (4) 2.07 (4) 2.899 (5) 152 (4)

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+1, −y+2, −z+2; (iii) x+1/2, −y+3/2, z−1/2; (iv) −x+2, −y+2, −z+1; (v) x−1/2, −y+3/2, z+1/2; (vi) −x+1/2, y−1/2, −z+3/2; (vii) x+1, y, z; (viii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5430).

References

  1. Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.
  2. Aghabozorg, H., Sadr-khanlou, E., Shokrollahi, A., Ghaedi, M. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 55–70.
  3. Attar Gharamaleki, J., Aghabozorg, H., Derikvand, Z. & Yousefi, M. (2009). Acta Cryst. E65, m824–m825. [DOI] [PMC free article] [PubMed]
  4. Beatty, A. M., Granger, K. E. & Simpson, A. E. (2002). Chem. Eur. J. 8, 3254–3259. [DOI] [PubMed]
  5. Dobrzycki, L. & Woźniak, K. (2008). CrystEngComm, 10, 577–589.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Imaz, I., Thillet, A. & Sutter, J. P. (2007). Cryst. Growth Des. 7, 1753–1761.
  9. MacDonald, J. C., Dorrestein, P., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692–11702.
  10. MacDonald, J. C., Luo, T.-J. M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 4, 1203–1209.
  11. Sharif, M. A., Aghajani, Z. & Aghabozorg, H. (2007). Anal. Sci. 23, x147–x148.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054371/bt5430sup1.cif

e-67-0m193-sup1.cif (26.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054371/bt5430Isup2.hkl

e-67-0m193-Isup2.hkl (327.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES