Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 22;67(Pt 2):o479. doi: 10.1107/S1600536811002455

N-Nitro-1H-pyrrole-2-carboxamide

Long Liu a, Chunlin He b, Zengxi Li a,*, Chunshan Li b, Xiangping Zhang b, Suojiang Zhang b
PMCID: PMC3051632  PMID: 21523136

Abstract

In the title compound, C5H5N3O3, the nitro group is twisted with respect to the amide group, with C—N—N—O torsion angles of 29.0 (2) and −153.66 (14)°. In the crystal, mol­ecules are linked through inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming supra­molecular chains along the a axis. These chains stack in parallel and form distinct layer motifs in the (001) plane.

Related literature

For applications of pyrrole derivatives as anti­microbials, see: Mohamed et al. (2009). For the structures of similar pyrrole derivatives, see: Zeng et al. (2007, 2010); Wang et al. (2010); Ferreira et al. (2002). For the synthesis of N,N′-dinitro­urea (DNU), see: Goede et al. (2001).graphic file with name e-67-0o479-scheme1.jpg

Experimental

Crystal data

  • C5H5N3O3

  • M r = 155.12

  • Orthorhombic, Inline graphic

  • a = 9.988 (3) Å

  • b = 6.4547 (17) Å

  • c = 19.184 (6) Å

  • V = 1236.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 133 K

  • 0.47 × 0.43 × 0.20 mm

Data collection

  • Rigaku AFC10/Saturn724+ diffractometer

  • 8849 measured reflections

  • 1402 independent reflections

  • 1214 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.106

  • S = 1.00

  • 1402 reflections

  • 108 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002455/fj2382sup1.cif

e-67-0o479-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002455/fj2382Isup2.hkl

e-67-0o479-Isup2.hkl (69.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.88 (3) 2.21 (3) 3.001 (2) 150 (2)
N2—H2N⋯O1ii 0.88 (2) 2.11 (2) 2.982 (2) 171.5 (19)
C3—H3⋯O1ii 0.95 2.39 3.269 (2) 154
C3—H3⋯O2ii 0.95 2.48 3.245 (2) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the National Natural Science Foundation of China (grant No. 21076221) and the National Defence Science and Technology Innovation Fund of the Chinese Academy of Sciences (grant No. CXJJ-11-M52).

supplementary crystallographic information

Comment

Pyrrole derivatives play an important role in heterocyclic chemistry due to their intrinsic biological activities as antimicrobial agents (Mohamed et al., 2009). The structures of these compounds have been reported extensively, such as 2,3,5-substituted pyrrole derivatives (Ferreira et al., 2002), 1-Benzyl-N-methyl-1H-pyrrole-2-carboxamide (Zeng et al., 2010), 2-(4,5-dibromo-1H-pyrrole-2-carboxamido) propionate (Zeng et al., 2007) and Tetraethyl 1,1'-(ethane-1,2-diyl)bis(2,5- dimethyl-1H-pyrrole-3,4-dicarboxylate) (Wang et al., 2010).

The bond length of N2—C5 for the title compound (1.404 (2) Å) is about 0.07 Å longer than compound 1-Benzyl-N-methyl-1H-pyrrole-2-carboxamide (1.334 (3) Å) (Zeng et al., 2010) (Fig. 1). The unit is nearly co-planar with the twist happens at nitro group (C5—N2—N3—O2 = 29.0 (2), C5—N2—N3—O3 = -153.66 (14)), the maximum deviation of other torsions is C3—C4—C5—N2 = -8.6 (3)°.

In the crystal structure (Fig. 2), molecules are connected through N1—H1N···O3, N2—H2N···O1, C3—H3···O1, C3—H3···O3 (Table 1) hydrogen bonds to form one-dimensional supramolecular chains along the a axis. These supramolecular chains stack in parallel and form distinct layer motif in (0 0 1) plane.

Experimental

Pyrrole (0.67 g, 0.01 mol) was added to a solution of N,N'-dinitrourea (DNU) (1.5 g, 0.01 mol) dissolved in acetonitrile (10 ml), stirred at room temperature for 24 h, the crude compound was obtained after acetonitrile was evaporated. Then the products were dissoved in ethyl acetate, colourless crystals suitable for X-ray crystal diffraction were obtained by slow evaporation of the solution at room temperature. DNU was synthesized according to the literautre (Goede et al., 2001).

Refinement

The hydrogen atoms bonded to N1 and N2 were located from a difference Fourier maps and refined isotropically with N—H = 0.88 (3) Å and 0.88 (2) Å respectively. The remaining hydrogen atoms were geometrically positioned (all C—H = 0.9500 Å).

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot of C5H5N3O3 at the 50% probability level; Hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Hydrogen-bonded layer structure.

Crystal data

C5H5N3O3 F(000) = 640
Mr = 155.12 Dx = 1.666 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3166 reflections
a = 9.988 (3) Å θ = 3.2–27.5°
b = 6.4547 (17) Å µ = 0.14 mm1
c = 19.184 (6) Å T = 133 K
V = 1236.8 (6) Å3 Platelet, colourless
Z = 8 0.47 × 0.43 × 0.20 mm

Data collection

Rigaku AFC10/Saturn724+ diffractometer 1214 reflections with I > 2σ(I)
Radiation source: Rotating Anode Rint = 0.034
graphite θmax = 27.5°, θmin = 3.9°
Detector resolution: 28.5714 pixels mm-1 h = −12→12
φ and ω scans k = −8→8
8849 measured reflections l = −24→24
1402 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.536P] where P = (Fo2 + 2Fc2)/3
1402 reflections (Δ/σ)max < 0.001
108 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.17512 (12) 0.34028 (18) 0.50500 (5) 0.0219 (3)
O2 0.27334 (11) 0.3909 (2) 0.37665 (6) 0.0256 (3)
O3 0.45611 (12) 0.21230 (19) 0.36431 (6) 0.0255 (3)
N1 0.25340 (14) 0.3489 (2) 0.64493 (7) 0.0207 (3)
N2 0.39562 (13) 0.3045 (2) 0.47037 (7) 0.0182 (3)
N3 0.37143 (13) 0.3012 (2) 0.39910 (7) 0.0178 (3)
C1 0.31849 (18) 0.3310 (3) 0.70652 (8) 0.0235 (4)
H1 0.2800 0.3496 0.7514 0.028*
C2 0.44956 (17) 0.2815 (3) 0.69312 (8) 0.0240 (4)
H2 0.5173 0.2581 0.7270 0.029*
C3 0.46594 (16) 0.2715 (2) 0.62056 (8) 0.0198 (4)
H3 0.5464 0.2417 0.5962 0.024*
C4 0.34176 (15) 0.3137 (2) 0.59132 (8) 0.0160 (3)
C5 0.29335 (15) 0.3204 (2) 0.52027 (8) 0.0158 (3)
H1N 0.169 (3) 0.380 (4) 0.6375 (12) 0.049 (7)*
H2N 0.474 (2) 0.250 (3) 0.4794 (11) 0.032 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0140 (6) 0.0339 (7) 0.0177 (5) −0.0002 (5) −0.0004 (4) 0.0003 (5)
O2 0.0181 (6) 0.0398 (7) 0.0188 (6) 0.0049 (5) −0.0022 (4) 0.0071 (5)
O3 0.0198 (6) 0.0381 (7) 0.0187 (6) 0.0050 (5) 0.0027 (5) −0.0052 (5)
N1 0.0164 (7) 0.0276 (7) 0.0180 (6) 0.0021 (6) 0.0007 (5) 0.0002 (6)
N2 0.0132 (6) 0.0281 (7) 0.0133 (6) 0.0016 (5) −0.0022 (5) 0.0011 (5)
N3 0.0153 (6) 0.0241 (7) 0.0141 (6) −0.0022 (5) 0.0004 (5) 0.0013 (5)
C1 0.0273 (9) 0.0286 (9) 0.0145 (7) −0.0002 (7) 0.0011 (6) 0.0000 (6)
C2 0.0223 (8) 0.0315 (9) 0.0183 (8) −0.0013 (7) −0.0053 (6) 0.0015 (6)
C3 0.0146 (7) 0.0257 (8) 0.0191 (8) −0.0008 (6) −0.0001 (6) 0.0010 (6)
C4 0.0147 (7) 0.0176 (7) 0.0158 (7) −0.0013 (6) 0.0003 (6) −0.0001 (5)
C5 0.0148 (7) 0.0164 (7) 0.0163 (7) −0.0011 (6) −0.0002 (5) −0.0002 (6)

Geometric parameters (Å, °)

O1—C5 1.2234 (19) N2—H2N 0.88 (2)
O2—N3 1.2167 (17) C1—C2 1.372 (2)
O3—N3 1.2206 (17) C1—H1 0.9500
N1—C1 1.354 (2) C2—C3 1.403 (2)
N1—C4 1.374 (2) C2—H2 0.9500
N1—H1N 0.88 (3) C3—C4 1.388 (2)
N2—N3 1.3886 (18) C3—H3 0.9500
N2—C5 1.404 (2) C4—C5 1.447 (2)
C1—N1—C4 109.32 (14) C1—C2—C3 107.93 (15)
C1—N1—H1N 128.4 (16) C1—C2—H2 126.0
C4—N1—H1N 122.3 (16) C3—C2—H2 126.0
N3—N2—C5 123.09 (13) C4—C3—C2 106.72 (14)
N3—N2—H2N 110.2 (14) C4—C3—H3 126.6
C5—N2—H2N 123.1 (14) C2—C3—H3 126.6
O2—N3—O3 126.02 (14) N1—C4—C3 107.68 (13)
O2—N3—N2 118.77 (13) N1—C4—C5 119.04 (14)
O3—N3—N2 115.15 (13) C3—C4—C5 133.25 (14)
N1—C1—C2 108.33 (14) O1—C5—N2 123.14 (14)
N1—C1—H1 125.8 O1—C5—C4 123.46 (14)
C2—C1—H1 125.8 N2—C5—C4 113.39 (13)
C5—N2—N3—O2 29.0 (2) C2—C3—C4—C5 −177.88 (16)
C5—N2—N3—O3 −153.66 (14) N3—N2—C5—O1 −2.7 (2)
C4—N1—C1—C2 −0.71 (19) N3—N2—C5—C4 177.98 (13)
N1—C1—C2—C3 0.9 (2) N1—C4—C5—O1 −5.8 (2)
C1—C2—C3—C4 −0.67 (19) C3—C4—C5—O1 172.13 (17)
C1—N1—C4—C3 0.28 (18) N1—C4—C5—N2 173.46 (13)
C1—N1—C4—C5 178.72 (14) C3—C4—C5—N2 −8.6 (3)
C2—C3—C4—N1 0.24 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O3i 0.88 (3) 2.21 (3) 3.001 (2) 150 (2)
N2—H2N···O1ii 0.88 (2) 2.11 (2) 2.982 (2) 171.5 (19)
C3—H3···O1ii 0.95 2.39 3.269 (2) 154
C3—H3···O2ii 0.95 2.48 3.245 (2) 138

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2382).

References

  1. Barbour, L. (2001). J. Supramol. Chem 1, 189–191.
  2. Ferreira, P. M. T., Maia, H. L. L. & Monteiro, L. S. (2002). Tetrahedron Lett. 43, 4491–4493.
  3. Goede, P., Wingborg, N., Bergman, H. & Latypov, N. V. (2001). Propellant Explos. Pyrotech. 26, 17–20.
  4. Mohamed, M. S., EL-Domany, R. A. & EL-Hameed, R. H. (2009). Acta Pharm. 59, 145–158. [DOI] [PubMed]
  5. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wang, S.-F., Li, C. & Chen, S. (2010). Acta Cryst. E66, o3047. [DOI] [PMC free article] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  9. Zeng, X. C., Li, K. P., Hu, F. & Zheng, L. (2010). Acta Cryst. E66, o2051. [DOI] [PMC free article] [PubMed]
  10. Zeng, X.-C., Zeng, J., Li, X. & Ling, X. (2007). Acta Cryst. E63, o3424.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002455/fj2382sup1.cif

e-67-0o479-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002455/fj2382Isup2.hkl

e-67-0o479-Isup2.hkl (69.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES