Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 22;67(Pt 2):o442. doi: 10.1107/S1600536810054516

2-Hy­droxy­ethyl 4-hy­droxy­benzoate

M Jeyalaxmi a, G Jagadeesan a, J Arulmoli b, D Roop Singh b, S Aravindhan a,*
PMCID: PMC3051633  PMID: 21523106

Abstract

In the title compound, C9H10O4, the dihedral angle between the benzene ring and the –CO2 unit is 11.93 (8)° and the conformation of the 2-hy­droxy­ethyl side chain is gauche [O—C—C—O = −71.91 (17)°]. In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For background to the properties of esters of 4-hy­droxy­benzoic acid, see: Kadokawa et al. (2002).graphic file with name e-67-0o442-scheme1.jpg

Experimental

Crystal data

  • C9H10O4

  • M r = 182.17

  • Triclinic, Inline graphic

  • a = 4.4235 (10) Å

  • b = 5.6850 (17) Å

  • c = 8.7050 (17) Å

  • α = 80.819 (13)°

  • β = 79.943 (14)°

  • γ = 81.804 (14)°

  • V = 211.30 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.978, T max = 0.982

  • 3761 measured reflections

  • 1767 independent reflections

  • 1609 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.088

  • S = 1.06

  • 1767 reflections

  • 126 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054516/hb5779sup1.cif

e-67-0o442-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054516/hb5779Isup2.hkl

e-67-0o442-Isup2.hkl (85.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4i 0.86 (3) 1.87 (3) 2.7204 (19) 169 (2)
O4—H4A⋯O2ii 0.75 (3) 2.15 (3) 2.8970 (18) 170 (3)
C9—H9A⋯O2iii 0.97 2.51 3.322 (2) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

SA thanks the UGC, India, for financial support.

supplementary crystallographic information

Comment

The ORTEP diagram of the title compound, (I), shown in Fig.1 indicates that the aromatic ring is in a plane and the ester group attached to it maintains near planarity with it which is defined by the torsion angles C5—C6—C7—O2 (166.91°), C5—C6—C7—O3 (-12.81°).

Though the C6—C7 is a single bond (1.468 Å) and the possibility of free rotation is high at that connectivity, the planarity exerted by the ester group may be purely because of crystal packing.

The torsion angle O3—C8—C9—O4 is -71.09° which makes the ethyl hydroxy O4 to assume the syn-clinal conformation with respect to the carboxy O3. Such a conformation instead of anti conformation may be due to crystal packing of the molecules which makes them compactly stacked to one another.

The crystal packing (Fig.2) shows the presence of inter-molecular hydrogen bonding. The phenolic oxygen (O1) forms a strong intermolecular hydrogen bond (O1—H1A···O4) with the D···A distance of 2.720 Å and the D—H···A angle of 169°. The ethanolic O4 donates the hydrogen to symmetrically related carbonyl O2 to form intermolecular hydrogen bond (O4—H4A···O2) with the D···A distance of 2.897 Å and the D—H···A angle of 170°. The carbon (C9) atom forms a weak intermolecular hydrogen bond (C9—H9A···O2) with the D···A distance of 3.392 Å and the D—H···A angle is 140.8°. All these three hydrogen bonds are exisiting between a given molecule and three different symmetry related molecules (x - 1, +y + 1, +z - 1 x, +y - 1, +z and x + 1, +y - 1, +z respectively). This multiple hydrogen bonding network makes the well defined crystal packing.

Experimental

An ethanolic solution of 3-methyl-1-phenyl-4-acetylpyrazolin-5-ol (0.432 g, 2 mmol) and 2-aminoethanol (0.122 g, 2mmoL) were taken in a round bottom flask and refluxed for 4 h. The solid product was filtered and washed with cold ethanol. The product obtained was pure by TLC and NMR spectroscopy. However, the product was further purified by re-crystallization from ethanol and dried under vacuum. The compound was crystallized by slow evaporation technique using methanol as solvent at room temperature to yield colourless blocks of (I).

Refinement

Anomalous dispersion was negliglble and the absolute sturcture of (I) could not be determined in the present analysis.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Crystal packing diagram. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C9H10O4 Z = 1
Mr = 182.17 F(000) = 96
Triclinic, P1 Dx = 1.432 Mg m3
Hall symbol: P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.4235 (10) Å Cell parameters from 1767 reflections
b = 5.6850 (17) Å θ = 2.4–28.3°
c = 8.7050 (17) Å µ = 0.11 mm1
α = 80.819 (13)° T = 293 K
β = 79.943 (14)° Block, colourless
γ = 81.804 (14)° 0.20 × 0.20 × 0.20 mm
V = 211.30 (9) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 1767 independent reflections
Radiation source: fine-focus sealed tube 1609 reflections with I > 2σ(I)
graphite Rint = 0.018
ω scans θmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −5→5
Tmin = 0.978, Tmax = 0.982 k = −7→7
3761 measured reflections l = −11→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.0112P] where P = (Fo2 + 2Fc2)/3
1767 reflections (Δ/σ)max < 0.001
126 parameters Δρmax = 0.21 e Å3
3 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.5796 (3) 0.5763 (2) 0.61019 (14) 0.0532 (3)
O2 1.0292 (3) 0.7852 (2) 1.22266 (15) 0.0481 (3)
O3 1.1612 (2) 0.38911 (18) 1.22823 (13) 0.0413 (3)
O4 1.2540 (3) −0.0314 (2) 1.46819 (18) 0.0527 (3)
C1 0.7231 (4) 0.7899 (3) 0.96121 (18) 0.0389 (4)
H1 0.6776 0.9251 1.0126 0.047*
C2 0.6084 (4) 0.7891 (3) 0.82391 (19) 0.0416 (4)
H2 0.4835 0.9223 0.7836 0.050*
C3 0.6800 (3) 0.5888 (2) 0.74610 (16) 0.0383 (4)
C4 0.8620 (4) 0.3879 (3) 0.80814 (19) 0.0441 (4)
H4 0.9092 0.2533 0.7562 0.053*
C5 0.9712 (4) 0.3888 (3) 0.94576 (17) 0.0406 (4)
H5 1.0900 0.2534 0.9878 0.049*
C6 0.9064 (3) 0.5905 (2) 1.02359 (17) 0.0346 (3)
C7 1.0346 (3) 0.6029 (3) 1.16625 (17) 0.0342 (3)
C8 1.3041 (4) 0.3878 (3) 1.36534 (18) 0.0385 (3)
H8A 1.1488 0.4292 1.4532 0.046*
H8B 1.4522 0.5040 1.3436 0.046*
C9 1.4636 (4) 0.1408 (3) 1.4041 (2) 0.0447 (4)
H9A 1.5896 0.0912 1.3092 0.054*
H9B 1.6004 0.1443 1.4793 0.054*
H1A 0.471 (6) 0.706 (5) 0.577 (3) 0.058 (6)*
H4A 1.190 (5) −0.062 (4) 1.401 (3) 0.056 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0782 (9) 0.0440 (7) 0.0442 (7) 0.0023 (6) −0.0365 (6) −0.0051 (5)
O2 0.0672 (8) 0.0375 (6) 0.0458 (6) 0.0033 (5) −0.0264 (5) −0.0130 (4)
O3 0.0587 (7) 0.0341 (5) 0.0368 (6) −0.0018 (4) −0.0256 (5) −0.0055 (4)
O4 0.0742 (8) 0.0404 (6) 0.0511 (8) −0.0043 (5) −0.0365 (6) −0.0024 (5)
C1 0.0488 (9) 0.0333 (8) 0.0360 (8) 0.0007 (6) −0.0148 (6) −0.0057 (6)
C2 0.0505 (9) 0.0336 (7) 0.0414 (8) 0.0019 (6) −0.0188 (7) −0.0010 (6)
C3 0.0498 (9) 0.0376 (8) 0.0306 (8) −0.0064 (6) −0.0173 (7) −0.0003 (6)
C4 0.0631 (10) 0.0324 (7) 0.0415 (9) −0.0008 (7) −0.0219 (7) −0.0081 (6)
C5 0.0553 (9) 0.0320 (8) 0.0375 (9) 0.0018 (6) −0.0223 (7) −0.0034 (6)
C6 0.0410 (8) 0.0324 (7) 0.0323 (8) −0.0061 (6) −0.0106 (6) −0.0035 (6)
C7 0.0381 (8) 0.0357 (8) 0.0305 (7) −0.0026 (6) −0.0116 (6) −0.0041 (6)
C8 0.0488 (9) 0.0385 (8) 0.0330 (7) −0.0008 (6) −0.0209 (6) −0.0075 (6)
C9 0.0508 (9) 0.0426 (8) 0.0443 (9) 0.0060 (6) −0.0247 (7) −0.0080 (6)

Geometric parameters (Å, °)

O1—C3 1.3494 (19) C3—C4 1.392 (2)
O1—H1A 0.86 (3) C4—C5 1.369 (2)
O2—C7 1.211 (2) C4—H4 0.9300
O3—C7 1.3357 (17) C5—C6 1.394 (2)
O3—C8 1.4436 (18) C5—H5 0.9300
O4—C9 1.426 (2) C6—C7 1.468 (2)
O4—H4A 0.75 (3) C8—C9 1.494 (2)
C1—C2 1.379 (2) C8—H8A 0.9700
C1—C6 1.390 (2) C8—H8B 0.9700
C1—H1 0.9300 C9—H9A 0.9700
C2—C3 1.387 (2) C9—H9B 0.9700
C2—H2 0.9300
C3—O1—H1A 112.3 (16) C1—C6—C5 119.03 (13)
C7—O3—C8 115.86 (12) C1—C6—C7 118.75 (13)
C9—O4—H4A 107.0 (19) C5—C6—C7 122.18 (12)
C2—C1—C6 120.59 (14) O2—C7—O3 123.00 (14)
C2—C1—H1 119.7 O2—C7—C6 124.52 (13)
C6—C1—H1 119.7 O3—C7—C6 112.48 (12)
C1—C2—C3 119.71 (14) O3—C8—C9 107.48 (12)
C1—C2—H2 120.1 O3—C8—H8A 110.2
C3—C2—H2 120.1 C9—C8—H8A 110.2
O1—C3—C2 123.02 (14) O3—C8—H8B 110.2
O1—C3—C4 116.90 (13) C9—C8—H8B 110.2
C2—C3—C4 120.08 (13) H8A—C8—H8B 108.5
C5—C4—C3 119.84 (14) O4—C9—C8 113.01 (14)
C5—C4—H4 120.1 O4—C9—H9A 109.0
C3—C4—H4 120.1 C8—C9—H9A 109.0
C4—C5—C6 120.74 (13) O4—C9—H9B 109.0
C4—C5—H5 119.6 C8—C9—H9B 109.0
C6—C5—H5 119.6 H9A—C9—H9B 107.8
C6—C1—C2—C3 −0.9 (2) C4—C5—C6—C7 −176.35 (15)
C1—C2—C3—O1 −179.07 (13) C8—O3—C7—O2 −2.2 (2)
C1—C2—C3—C4 1.2 (2) C8—O3—C7—C6 177.51 (12)
O1—C3—C4—C5 −179.98 (15) C1—C6—C7—O2 −10.8 (2)
C2—C3—C4—C5 −0.3 (2) C5—C6—C7—O2 166.91 (15)
C3—C4—C5—C6 −1.0 (3) C1—C6—C7—O3 169.50 (13)
C2—C1—C6—C5 −0.4 (2) C5—C6—C7—O3 −12.81 (18)
C2—C1—C6—C7 177.41 (14) C7—O3—C8—C9 −173.21 (12)
C4—C5—C6—C1 1.3 (2) O3—C8—C9—O4 −71.91 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O4i 0.86 (3) 1.87 (3) 2.7204 (19) 169 (2)
O4—H4A···O2ii 0.75 (3) 2.15 (3) 2.8970 (18) 170 (3)
C9—H9A···O2iii 0.97 2.51 3.322 (2) 141

Symmetry codes: (i) x−1, y+1, z−1; (ii) x, y−1, z; (iii) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5779).

References

  1. Bruker (2008). APEX2 , SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Kadokawa, J., Suzuki, T., Iwasaki, Y. & Tagaya, H. (2002). Eur. Polym. J 39, 985–989.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054516/hb5779sup1.cif

e-67-0o442-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054516/hb5779Isup2.hkl

e-67-0o442-Isup2.hkl (85.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES