Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 22;67(Pt 2):o444. doi: 10.1107/S1600536810054127

(Z)-4-{1-[(2-Hy­droxy­ethyl)­amino]­ethyl­idene}-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

R Jayarajan a, P Sharmila b, G Jagadeesan b, G Vasuki a, S Aravindhan b,*
PMCID: PMC3051635  PMID: 21523108

Abstract

In the title compound C14H17N3O2, the dihedral angle between the rings is 16.68 (13)°. Although the compound crystallizes in the keto form, the possibility of keto-enamine–enol-imine tautomerism is explained by a strong intra­molecular N—H⋯O hydrogen bond.

Related literature

4-Acyl­pyrazolo­nes are good chelating ligands and also show anti­bacterial, anti­fungal, anti-inflammatory, carcino-static and enzyme inhibitory activity, see: Patel et al. (2000, 2001); Chohan & Kausar (2000); Chohan, Jaffery & Supuran (2001); Chohan, Munawar & Supuran (2001); Chohan et al. (2002); Yang et al. (2000). For analgesic agents, see: Gursoy et al. (2000).graphic file with name e-67-0o444-scheme1.jpg

Experimental

Crystal data

  • C14H17N3O2

  • M r = 259.31

  • Monoclinic, Inline graphic

  • a = 22.4703 (13) Å

  • b = 7.0902 (4) Å

  • c = 18.0565 (11) Å

  • β = 110.926 (7)°

  • V = 2687.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) T min = 0.978, T max = 0.982

  • 4492 measured reflections

  • 2353 independent reflections

  • 1544 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.173

  • S = 0.98

  • 2353 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054127/ds2072sup1.cif

e-67-0o444-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054127/ds2072Isup2.hkl

e-67-0o444-Isup2.hkl (113.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H⋯O1 0.90 (3) 1.92 (3) 2.711 (3) 146 (3)

Acknowledgments

RJ thanks the UGC, India, for the award of Rajiv Gandhi National Fellowship. GV thanks the UGC, India, and the DST–India (Green Chemistry open-ended project) for financial assistance and the DST–FIST for the single crystal X-ray facility at the Department of Chemistry, Pondicherry University, Puducherry.

supplementary crystallographic information

Comment

The ORTEP diagram for the molecule of the title compound is given in Fig:1. The molecule is almost planar where the phenyl ring is tilted by 17.66° to the rest of the molecule. The planarity is explained by the torsion angles C3—C4—C13—N3(-179.49°) and C13—N3—C15—C16 (173.88°).

The hydroxyl oxygen (O2) shows disorder and hence O2A and O2B were not refined using anisotropic thermal parameters.This disordered nature show a dynamic rotation about C15—C16 single bond.

The hydrogen (H3) of the imino group(N3) forms a strong intra-molecular hydrogen bond with keto oxygen O1 (2.711 Å, 146.56°). Along with this, the double bond character of C13—N3, show the possibility of proton shuttling between O1 and N3.

Though phenyl ring and pyrazol ring can adopt perpendicularity,the weak C11—H11···O1 interaction (2.954 Å, 121.13°) keeps them with near planarity.

The crystal packing diagram in Fig:2.

Experimental

Ethanolic solution of 3-methyl-1-phenyl-4-acetylpyrazolin-5-ol (0.432 g, 2 mmol) and 2-aminoethanol (0.122 g, 2mmoL) were taken in a round bottom flask and refluxed for 4 h. The solid product was filtered and washed with cold ethanol. The product obtained was pure by TLC and NMR spectroscopy. However, the product was further purified by re-crystallization from ethanol and dried under vacuum. The compound was crystallized by slow evaporation technique using methanol as solvent at room temperature.

Figures

Fig. 1.

Fig. 1.

The ORTEP diagram of molecule H-atoms are involved in hydrogen bonding are shown as Dashed lines.

Fig. 2.

Fig. 2.

Crystal Packing Diagram.

Crystal data

C14H17N3O2 F(000) = 1104
Mr = 259.31 Dx = 1.282 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2447 reflections
a = 22.4703 (13) Å θ = 2.7–29.3°
b = 7.0902 (4) Å µ = 0.09 mm1
c = 18.0565 (11) Å T = 273 K
β = 110.926 (7)° Monoclinic, colourless
V = 2687.0 (3) Å3 0.20 × 0.20 × 0.20 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 2353 independent reflections
Radiation source: fine-focus sealed tube 1544 reflections with I > 2σ(I)
graphite Rint = 0.026
Detector resolution: 15.9821 pixels mm-1 θmax = 25.0°, θmin = 3.0°
ω scans h = −26→26
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) k = −8→4
Tmin = 0.978, Tmax = 0.982 l = −19→21
4492 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173 H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.1157P)2] where P = (Fo2 + 2Fc2)/3
2353 reflections (Δ/σ)max = 0.001
176 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 −0.05676 (8) 0.3364 (3) 0.35564 (9) 0.0534 (5)
N1 −0.11378 (9) 0.2982 (3) 0.44012 (10) 0.0384 (5)
N2 −0.10103 (10) 0.2539 (3) 0.51998 (10) 0.0439 (5)
C11 −0.19444 (10) 0.4030 (3) 0.31598 (12) 0.0432 (6)
H11 −0.1628 0.4457 0.2982 0.052*
C10 −0.25819 (11) 0.4237 (4) 0.26886 (14) 0.0523 (7)
H10 −0.2690 0.4794 0.2192 0.063*
N3 0.06883 (10) 0.2770 (3) 0.43754 (13) 0.0500 (6)
C6 −0.17841 (10) 0.3190 (3) 0.38911 (12) 0.0378 (6)
C4 −0.00882 (11) 0.2571 (3) 0.49473 (13) 0.0382 (6)
C9 −0.30523 (12) 0.3635 (4) 0.29449 (15) 0.0586 (8)
H9 −0.3478 0.3793 0.2628 0.070*
C13 0.05492 (11) 0.2441 (3) 0.50051 (13) 0.0397 (6)
C14 0.10798 (12) 0.1939 (4) 0.57534 (14) 0.0539 (7)
H14A 0.1475 0.1930 0.5661 0.081*
H14B 0.1004 0.0711 0.5926 0.081*
H14C 0.1103 0.2852 0.6155 0.081*
C8 −0.28911 (13) 0.2791 (4) 0.36768 (16) 0.0627 (8)
H8 −0.3210 0.2374 0.3852 0.075*
C3 −0.03936 (12) 0.2315 (3) 0.55172 (13) 0.0413 (6)
C7 −0.22638 (12) 0.2558 (4) 0.41503 (14) 0.0510 (7)
H7 −0.2159 0.1980 0.4643 0.061*
C5 −0.05950 (11) 0.3010 (3) 0.42224 (12) 0.0379 (6)
C12 −0.01114 (13) 0.1893 (4) 0.63896 (13) 0.0569 (7)
H12A −0.0446 0.1807 0.6602 0.085*
H12B 0.0177 0.2884 0.6654 0.085*
H12C 0.0115 0.0718 0.6470 0.085*
C16 0.12548 (15) 0.2950 (5) 0.34639 (18) 0.0694 (9)
C15 0.13080 (13) 0.2678 (5) 0.42954 (18) 0.0677 (8)
H15A 0.1501 0.1461 0.4481 0.081*
H15B 0.1583 0.3644 0.4624 0.081*
O2A 0.08008 (17) 0.1945 (5) 0.2936 (2) 0.0683 (13)* 0.567 (5)
O2B 0.0870 (2) 0.4236 (7) 0.3041 (3) 0.0637 (16)* 0.433 (5)
H 0.0343 (14) 0.315 (4) 0.3970 (16) 0.063 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0487 (10) 0.0768 (13) 0.0344 (9) 0.0027 (9) 0.0143 (8) 0.0094 (8)
N1 0.0392 (11) 0.0452 (11) 0.0299 (10) 0.0004 (8) 0.0115 (8) 0.0011 (8)
N2 0.0461 (12) 0.0548 (13) 0.0294 (10) −0.0018 (9) 0.0116 (9) 0.0022 (9)
C11 0.0442 (13) 0.0431 (13) 0.0410 (13) −0.0009 (11) 0.0135 (11) −0.0001 (10)
C10 0.0544 (15) 0.0531 (15) 0.0421 (14) 0.0072 (12) 0.0084 (12) 0.0011 (12)
N3 0.0375 (12) 0.0651 (15) 0.0450 (13) 0.0036 (10) 0.0120 (10) 0.0048 (11)
C6 0.0441 (13) 0.0344 (12) 0.0336 (12) 0.0012 (10) 0.0122 (10) −0.0046 (10)
C4 0.0437 (13) 0.0346 (12) 0.0323 (12) −0.0009 (10) 0.0087 (10) 0.0005 (10)
C9 0.0436 (14) 0.077 (2) 0.0485 (16) 0.0075 (13) 0.0083 (12) −0.0075 (14)
C13 0.0467 (14) 0.0324 (12) 0.0356 (13) −0.0027 (10) 0.0093 (11) −0.0034 (10)
C14 0.0487 (15) 0.0547 (15) 0.0471 (15) −0.0001 (12) 0.0035 (12) −0.0006 (12)
C8 0.0467 (16) 0.092 (2) 0.0538 (17) −0.0024 (14) 0.0234 (13) −0.0078 (15)
C3 0.0489 (14) 0.0369 (13) 0.0350 (12) −0.0027 (10) 0.0110 (11) −0.0003 (10)
C7 0.0445 (14) 0.0710 (19) 0.0388 (14) −0.0002 (13) 0.0163 (12) −0.0012 (12)
C5 0.0443 (13) 0.0381 (12) 0.0310 (12) −0.0007 (10) 0.0131 (10) 0.0014 (9)
C12 0.0632 (17) 0.0698 (18) 0.0328 (13) −0.0007 (14) 0.0110 (12) 0.0068 (12)
C16 0.0639 (18) 0.091 (2) 0.0568 (18) −0.0034 (17) 0.0262 (15) 0.0007 (17)
C15 0.0434 (16) 0.094 (2) 0.0663 (19) 0.0048 (14) 0.0208 (14) 0.0060 (16)

Geometric parameters (Å, °)

O1—C5 1.251 (3) C9—H9 0.9300
N1—C5 1.369 (3) C13—C14 1.491 (3)
N1—N2 1.402 (2) C14—H14A 0.9600
N1—C6 1.423 (3) C14—H14B 0.9600
N2—C3 1.306 (3) C14—H14C 0.9600
C11—C6 1.374 (3) C8—C7 1.373 (3)
C11—C10 1.388 (3) C8—H8 0.9300
C11—H11 0.9300 C3—C12 1.503 (3)
C10—C9 1.365 (4) C7—H7 0.9300
C10—H10 0.9300 C12—H12A 0.9600
N3—C13 1.303 (3) C12—H12B 0.9600
N3—C15 1.452 (4) C12—H12C 0.9600
N3—H 0.90 (3) C16—O2B 1.300 (5)
C6—C7 1.394 (4) C16—O2A 1.328 (4)
C4—C13 1.401 (4) C16—C15 1.476 (4)
C4—C3 1.438 (3) C15—H15A 0.9700
C4—C5 1.429 (3) C15—H15B 0.9700
C9—C8 1.376 (4)
C5—N1—N2 111.97 (17) H14A—C14—H14C 109.5
C5—N1—C6 129.44 (18) H14B—C14—H14C 109.5
N2—N1—C6 118.40 (18) C7—C8—C9 120.7 (3)
C3—N2—N1 105.88 (18) C7—C8—H8 119.7
C6—C11—C10 119.6 (2) C9—C8—H8 119.7
C6—C11—H11 120.2 N2—C3—C4 111.9 (2)
C10—C11—H11 120.2 N2—C3—C12 117.9 (2)
C9—C10—C11 120.9 (2) C4—C3—C12 130.1 (2)
C9—C10—H10 119.5 C8—C7—C6 119.8 (2)
C11—C10—H10 119.5 C8—C7—H7 120.1
C13—N3—C15 128.0 (2) C6—C7—H7 120.1
C13—N3—H 111.0 (18) O1—C5—N1 125.7 (2)
C15—N3—H 120.9 (18) O1—C5—C4 128.8 (2)
C11—C6—C7 119.6 (2) N1—C5—C4 105.45 (19)
C11—C6—N1 121.6 (2) C3—C12—H12A 109.5
C7—C6—N1 118.8 (2) C3—C12—H12B 109.5
C13—C4—C3 132.4 (2) H12A—C12—H12B 109.5
C13—C4—C5 122.8 (2) C3—C12—H12C 109.5
C3—C4—C5 104.8 (2) H12A—C12—H12C 109.5
C10—C9—C8 119.4 (2) H12B—C12—H12C 109.5
C10—C9—H9 120.3 O2B—C16—O2A 77.0 (3)
C8—C9—H9 120.3 O2B—C16—C15 119.0 (3)
N3—C13—C4 118.7 (2) O2A—C16—C15 114.9 (3)
N3—C13—C14 118.0 (2) N3—C15—C16 111.3 (2)
C4—C13—C14 123.3 (2) N3—C15—H15A 109.4
C13—C14—H14A 109.5 C16—C15—H15A 109.4
C13—C14—H14B 109.5 N3—C15—H15B 109.4
H14A—C14—H14B 109.5 C16—C15—H15B 109.4
C13—C14—H14C 109.5 H15A—C15—H15B 108.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H···O1 0.90 (3) 1.92 (3) 2.711 (3) 146 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2072).

References

  1. Chohan, Z. H., Jaffery, M. F. & Supuran, C. T. (2001). Met. Based Drugs. 8, 95–101. [DOI] [PMC free article] [PubMed]
  2. Chohan, Z. H. & Kausar, S. (2000). Met. Based Drugs, 7, 17–22. [DOI] [PMC free article] [PubMed]
  3. Chohan, Z. H., Munawar, A. & Supuran, C. T. (2001). Met. Based Drugs. 8, 137–143. [DOI] [PMC free article] [PubMed]
  4. Chohan, Z. H., Rauf, A. & Supuran, C. T. (2002). Met. Based Drugs. 8, 287–291. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Gursoy, A., Demiravak, S., Capan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem 35, 359–364. [DOI] [PubMed]
  7. Oxford Diffraction (2007). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  8. Patel, K. M., Patel, K. N., Patel, N. H. & Patel, M. N. (2001). Synth. React. Inorg. Met. Org. Chem, 31, 239–246.
  9. Patel, K. M., Patel, K. N., Patel, N. H., Patel, M. N., Chandrasekhar, S. & Cunico, R. F. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 1965–1973.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Yang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599–2604.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054127/ds2072sup1.cif

e-67-0o444-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054127/ds2072Isup2.hkl

e-67-0o444-Isup2.hkl (113.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES