Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 29;67(Pt 2):m286–m287. doi: 10.1107/S1600536811002911

{2,6-Bis[(2,6-diphenyl­phosphan­yl)­oxy]-4-fluoro­phenyl-κ3 P,C 1,P′}(6-methyl-2,2,4-trioxo-3,4-dihydro-1,2,3-oxathia­zin-3-ido-κN)palladium(II)

Benjamin F Wicker a, Rachel Seaman a, Norris W Hoffman a, James H Davis Jr a, Richard E Sykora a,*
PMCID: PMC3051636  PMID: 21522930

Abstract

The title acesulfamate complex, [Pd(C30H22FO2P2)(C4H4NO4S)], contains a four-coordinate Pd(II) ion with the expected, although relatively distorted, square-planar geometry where the four L—Pd—L angles range from 79.58 (8) to 102.47 (7)°. The acesulfamate ligand is N-bound to Pd [Pd—N = 2.127 (2) Å] with a dihedral angle of 76.35 (6)° relative to the square plane. Relatively long phen­yl–acesulfamate C—H⋯O and phen­yl–fluorine C—H⋯F inter­actions consolidate the crystal packing.

Related literature

For the low toxicity of acesulfamate, see: Lipinski (2003). For examples of different modes of acesulfamate bonding to transition metals, see: Bulut et al. (2005); Cavicchioli et al. (2010); Şahin et al. (2009, 2010); Dege et al. (2006, 2007); Beck et al. (1985); İçbudak et al. (2005). For applications of 19F-NMR reporter moieties in monitoring ligand-substitution equilibria, see: Hoffman et al. (2009); Kwan et al. (2007); Carter et al. (2004); Wicker et al. (2007).graphic file with name e-67-0m286-scheme1.jpg

Experimental

Crystal data

  • [Pd(C30H22FO2P2)(C4H4NO4S)]

  • M r = 763.96

  • Triclinic, Inline graphic

  • a = 10.6088 (12) Å

  • b = 11.0069 (7) Å

  • c = 14.066 (2) Å

  • α = 89.175 (9)°

  • β = 88.524 (12)°

  • γ = 82.021 (7)°

  • V = 1625.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 290 K

  • 0.67 × 0.55 × 0.25 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.620, T max = 0.828

  • 6311 measured reflections

  • 5963 independent reflections

  • 5091 reflections with I > 2σ(I)

  • R int = 0.020

  • 3 standard reflections every 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.078

  • S = 1.05

  • 5963 reflections

  • 416 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement: CAD-4-PC; data reduction: XCAD4-PC (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002911/gw2097sup1.cif

e-67-0m286-sup1.cif (24.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002911/gw2097Isup2.hkl

e-67-0m286-Isup2.hkl (291.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O3i 0.93 2.42 3.284 (4) 155
C16—H16⋯O6ii 0.93 2.47 3.284 (4) 146
C10—H10⋯O4iii 0.93 2.50 3.305 (5) 145
C8—H8⋯F1iv 0.93 2.48 3.406 (5) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The chlorido analogue used to prepare Ph{PdF}Ace was provided by Dr Man-Lung Kwan of John Carroll University, University Heights, Ohio, USA. The authors gratefully acknowledge the Department of Chemistry and the Univeristy Committee for Undergraduate Research at the University of South Alabama for their generous support and the Department of Energy and Oak Ridge National Laboratory for the Nonius CAD-4 X-ray diffractometer used in these studies. They also acknowledge support from the National Science Foundation–grant #CHE-99–09502, REU Supplement with Professor Alan Marshall of Florida State University/National High Magnetic Field Laboratory, Tallahassee, Florida USA.

supplementary crystallographic information

Comment

As thoroughly tested, apparently innocuous foodstuff additives (Lipinsky, 2003), the attraction of the acesulfamate and saccharinate anions as weakly binding ligands for organotransition-metal complexes and components of ionic liquids is obvious. The title complex, abbreviated as Ph{PdF}Ace hereafter, is readily prepared in high yield by a benchtop procedure from its chlorido analogue (Kwan et al., 2007; Hoffman et al., 2009) in an extension of Rh(I) Vaska chemistry (Carter et al., 2004). The presence of the pincer-ligand fluorine atom on the central aryl ring affords a convenient 19F-NMR reporter moiety (whose accuracy may also be corroborated by the two equivalent pendant-arm phosphinite donors by 31P-NMR) for monitoring ligand-substitution chemistry of the acesulfamate anion. A previous study of anion-metathesis equilibria using neutral Ph{PdF}X and N(PPh3)2+ salts has shown anion affinity for Ph{PdF}+ to follow X- = chloride > saccharinate > trifluoroacetate > acesulfamate > nitrate (Wicker et al., 2007). The acesulfamate complex displays a fascinating combination of 19F and 31P couplings to 13C nuclei in the pincer central fluoro-aryl ring, in which JF—C and JP—C correspond visually to their respective doublet and triplet coupling patterns.

A survey of crystal structures of transition-metal acesulfamate complexes shows three principal forms of metal–acesulfamate bonding: (i) monodentate metal to N bond, (ii) monodentate metal to carbonyl O bond (Şahin et al., 2010; Dege et al., 2007), and (iii) metal bonds to both N and carbonyl O in κ2-manner (Şahin et al., 2009; Dege et al., 2006; Bulut et al., 2005). When water is present in the crystal, extensive hydrogen bonding occurs. The title compound, a four-coordinate d8 complex, has the expected distorted square-planar geometry in which the acesulfamate is N-bound to Pd. The Pd—N distance is 2.127 (2) Å, significantly longer than the Pt—N distance (2.036 (3) Å) in another square-planar d8 complex, K2[trans-Pt(Ace)2Cl2] (Cavicchioli et al., 2010; Beck et al., 1985), but much shorter than those in divalent late-metal N-acesulfamates with octahedral Jahn-Teller distortion: 2.7175 (16) Å in trans-Cu(c—C6H10-1,2-(NH2)2)(Ace)2 (Şahin et al., 2010) and 2.3180 (19) Å in trans-Co(H2O)4(Ace)2 (İçbudak, 2005). The only directly comparable structure above, K2[trans-Pt(Ace)2Cl2], probably has a shorter Pt—N distance than that in Ph{PdF}Ace because the trans-effect of the fluoroaryl-Pd moiety is stronger than that of N-bound acesulfamate. The almost-planar acesulfamate ring (with the sulfur the only significantly nonplanar atom) in Ph{PdF}Ace is tilted 76.35 (6)° from the Pd(II) coordination plane, whereas the similarly nearly-planar acesulfamate ring in K2[trans-Pt(Ace)2Cl2] is nearly perpendicular to the Pt(II) coordination plane.

Experimental

Pd(C4H4NO4S)(C18H22FO2P2), abbreviated by Ph{PdF}Ace hereafter, was prepared by stirring Ph{PdF}Cl (25 mg, 0.040 mmol) with silver(I) acesulfamate (1.5 mol equiv.) in benzene (25 mL) at ambient temperature for 24 h. The AgCl precipitate was then removed by filtration, and the solvent was removed on a rotary evapaorator to afford a white microcrystalline solid (88% yield). Suitable single crystals were prepared by slow evaporation of solvent from a solution in fluorobenzene at 24 °C. The complex was characterized by NMR in CDCl3.

1H: (relative to internal TMS) δ 1.999 and δ 2.015 (3H, apparent doublet); δ 5.476 and δ 5.480 (1H, apparent doublet); δ 6.443 (2H, doublet, 3JH—F=9.7 Hz); δ 7.51 (8H, overlapping multiplets); δ 7.807 (12H, overlapping multiplets)

19F: (relative to internal C6F6 at δ -161.59) δ -111.29 (triplet of triplets,3JH—F=9.7 Hz, 5JP—F=1.9 Hz)

31P: (relative to external 85% aq. phosphoric acid) δ 148.79 (doublet, 5JP—F=1.9 Hz)

13C: (relative to internal TMS) Ace: δ 19.47(s), δ 103.34(s), carbonyl not observed with 6 K scans Ph2P: δ 128.69(t; 3JP—C=5.8 Hz), ? 132.35(s), δ 132.43(t; 1JP—C=53 Hz), δ 132.54(t; 2JP—C=8.2 Hz) Pincer Aryl: δ 95.69(d of t; 2JF—C=26 Hz), 3JP—C=8.6 Hz), δ 123.68(d of t; 3JF—C~2JP—C\sim 32 Hz, 3JP—C=8.6 Hz), δ 164.07(d of t; 3JF—C=15 Hz, 2JP—C=7.7 Hz), δ 163.93(d; 1JF—C=244 Hz)

Refinement

Hydrogen atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for all H atoms except for the methyl H atoms which were refined with Uiso(H) = 1.5Ueq(C) and C—H distances of 0.96 Å.

Figures

Fig. 1.

Fig. 1.

A thermal ellipsoid plot (50%) of the title compound showing the labeling scheme. H atoms are shown as spheres of arbitrary size.

Crystal data

[Pd(C30H22FO2P2)(C4H4NO4S)] Z = 2
Mr = 763.96 F(000) = 772
Triclinic, P1 Dx = 1.560 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.6088 (12) Å Cell parameters from 25 reflections
b = 11.0069 (7) Å θ = 8.0–12.0°
c = 14.066 (2) Å µ = 0.79 mm1
α = 89.175 (9)° T = 290 K
β = 88.524 (12)° Prism, colorless
γ = 82.021 (7)° 0.67 × 0.55 × 0.25 mm
V = 1625.9 (3) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 5091 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.020
graphite θmax = 25.4°, θmin = 2.4°
θ/2θ scans h = 0→12
Absorption correction: ψ scan (North et al., 1968) k = −13→13
Tmin = 0.620, Tmax = 0.828 l = −16→16
6311 measured reflections 3 standard reflections every 120 min
5963 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.4794P] where P = (Fo2 + 2Fc2)/3
5963 reflections (Δ/σ)max = 0.001
416 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.319883 (17) 0.194802 (18) 0.257293 (13) 0.03998 (7)
P1 0.40296 (7) 0.34887 (7) 0.17797 (5) 0.04728 (17)
P2 0.29164 (7) 0.00104 (6) 0.30445 (5) 0.04611 (16)
S1 0.04728 (7) 0.36685 (7) 0.28910 (5) 0.05509 (19)
F1 0.73387 (18) −0.1038 (2) 0.01746 (14) 0.0793 (6)
O1 0.5064 (2) 0.27851 (19) 0.10175 (14) 0.0594 (5)
O2 0.4125 (2) −0.08849 (18) 0.25628 (15) 0.0601 (5)
O3 0.0472 (3) 0.4957 (2) 0.29368 (18) 0.0809 (7)
O4 0.0277 (2) 0.3168 (2) 0.20004 (16) 0.0760 (7)
O5 −0.07029 (18) 0.3374 (2) 0.35586 (15) 0.0599 (5)
O6 0.2777 (2) 0.2668 (2) 0.47308 (15) 0.0652 (6)
N1 0.1673 (2) 0.2921 (2) 0.33821 (16) 0.0480 (5)
C1 0.4573 (2) 0.0973 (2) 0.18193 (18) 0.0445 (6)
C2 0.5307 (3) 0.1527 (3) 0.11519 (19) 0.0492 (6)
C3 0.6248 (3) 0.0868 (3) 0.0595 (2) 0.0562 (7)
H3 0.6732 0.1253 0.0154 0.067*
C4 0.6432 (3) −0.0378 (3) 0.0727 (2) 0.0590 (8)
C5 0.5753 (3) −0.1000 (3) 0.1369 (2) 0.0584 (8)
H5 0.5905 −0.1849 0.1436 0.070*
C6 0.4836 (3) −0.0294 (3) 0.19080 (19) 0.0497 (6)
C7 0.3064 (3) 0.4549 (3) 0.1022 (2) 0.0555 (7)
C8 0.2366 (3) 0.4084 (4) 0.0329 (2) 0.0768 (10)
H8 0.2418 0.3241 0.0246 0.092*
C9 0.1581 (4) 0.4901 (6) −0.0243 (3) 0.0938 (14)
H9 0.1132 0.4599 −0.0724 0.113*
C10 0.1466 (4) 0.6124 (6) −0.0106 (3) 0.1002 (16)
H10 0.0940 0.6656 −0.0492 0.120*
C11 0.2112 (4) 0.6571 (4) 0.0587 (3) 0.0974 (14)
H11 0.2008 0.7413 0.0689 0.117*
C12 0.2926 (4) 0.5806 (3) 0.1151 (3) 0.0772 (10)
H12 0.3383 0.6132 0.1618 0.093*
C13 0.4943 (3) 0.4430 (2) 0.2440 (2) 0.0485 (6)
C14 0.6042 (3) 0.4790 (3) 0.2059 (3) 0.0725 (10)
H14 0.6361 0.4494 0.1472 0.087*
C15 0.6669 (4) 0.5593 (4) 0.2551 (3) 0.0830 (11)
H15 0.7421 0.5823 0.2299 0.100*
C16 0.6199 (4) 0.6049 (3) 0.3398 (3) 0.0718 (9)
H16 0.6613 0.6609 0.3715 0.086*
C17 0.5120 (4) 0.5686 (4) 0.3782 (3) 0.0786 (10)
H17 0.4802 0.5996 0.4365 0.094*
C18 0.4494 (3) 0.4861 (3) 0.3315 (2) 0.0668 (8)
H18 0.3772 0.4598 0.3591 0.080*
C19 0.1541 (3) −0.0538 (3) 0.2582 (2) 0.0522 (7)
C20 0.0796 (4) 0.0157 (3) 0.1943 (3) 0.0766 (10)
H20 0.0995 0.0923 0.1757 0.092*
C21 −0.0252 (4) −0.0270 (4) 0.1573 (3) 0.1013 (15)
H21 −0.0757 0.0213 0.1142 0.122*
C22 −0.0549 (4) −0.1389 (4) 0.1833 (3) 0.0922 (13)
H22 −0.1257 −0.1672 0.1584 0.111*
C23 0.0189 (5) −0.2090 (4) 0.2457 (3) 0.0961 (14)
H23 −0.0008 −0.2861 0.2632 0.115*
C24 0.1219 (4) −0.1674 (3) 0.2831 (3) 0.0805 (11)
H24 0.1715 −0.2165 0.3262 0.097*
C25 0.2974 (3) −0.0480 (2) 0.42676 (19) 0.0458 (6)
C26 0.1920 (3) −0.0163 (3) 0.4854 (2) 0.0591 (7)
H26 0.1176 0.0246 0.4602 0.071*
C27 0.1961 (3) −0.0446 (3) 0.5806 (2) 0.0718 (9)
H27 0.1251 −0.0216 0.6198 0.086*
C28 0.3057 (4) −0.1074 (4) 0.6181 (2) 0.0733 (10)
H28 0.3082 −0.1277 0.6825 0.088*
C29 0.4097 (3) −0.1394 (3) 0.5611 (2) 0.0665 (9)
H29 0.4833 −0.1818 0.5867 0.080*
C30 0.4077 (3) −0.1095 (3) 0.4651 (2) 0.0543 (7)
H30 0.4798 −0.1306 0.4267 0.065*
C31 0.1763 (3) 0.2983 (2) 0.43552 (19) 0.0473 (6)
C32 0.0581 (3) 0.3353 (2) 0.4901 (2) 0.0507 (6)
H32 0.0638 0.3495 0.5548 0.061*
C33 −0.0556 (3) 0.3498 (2) 0.4529 (2) 0.0508 (7)
C34 −0.1806 (3) 0.3777 (3) 0.5027 (3) 0.0680 (9)
H34A −0.1680 0.3898 0.5690 0.102*
H34B −0.2283 0.3104 0.4955 0.102*
H34C −0.2268 0.4508 0.4759 0.102*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.03722 (11) 0.04267 (12) 0.03896 (12) −0.00192 (8) 0.00034 (8) −0.00073 (8)
P1 0.0490 (4) 0.0496 (4) 0.0438 (4) −0.0100 (3) 0.0060 (3) −0.0018 (3)
P2 0.0459 (4) 0.0421 (4) 0.0485 (4) 0.0003 (3) −0.0018 (3) 0.0037 (3)
S1 0.0510 (4) 0.0561 (4) 0.0535 (4) 0.0074 (3) 0.0034 (3) 0.0106 (3)
F1 0.0624 (11) 0.0990 (15) 0.0679 (12) 0.0194 (10) 0.0124 (9) −0.0230 (11)
O1 0.0628 (12) 0.0598 (12) 0.0561 (12) −0.0139 (10) 0.0193 (10) −0.0079 (10)
O2 0.0623 (12) 0.0488 (11) 0.0633 (13) 0.0112 (9) 0.0086 (10) 0.0036 (10)
O3 0.0935 (18) 0.0538 (13) 0.0895 (18) 0.0051 (12) 0.0168 (14) 0.0220 (12)
O4 0.0704 (15) 0.0988 (18) 0.0523 (13) 0.0119 (13) −0.0092 (11) 0.0079 (12)
O5 0.0412 (10) 0.0740 (14) 0.0623 (13) −0.0011 (9) 0.0014 (9) 0.0057 (11)
O6 0.0520 (12) 0.0866 (16) 0.0544 (12) 0.0023 (11) −0.0091 (10) −0.0136 (11)
N1 0.0442 (12) 0.0517 (13) 0.0448 (12) 0.0043 (10) 0.0022 (10) −0.0004 (10)
C1 0.0389 (13) 0.0518 (15) 0.0410 (13) 0.0010 (11) −0.0035 (11) −0.0053 (11)
C2 0.0437 (14) 0.0609 (17) 0.0432 (14) −0.0064 (12) −0.0008 (11) −0.0105 (13)
C3 0.0425 (15) 0.080 (2) 0.0460 (15) −0.0083 (14) 0.0048 (12) −0.0128 (14)
C4 0.0452 (15) 0.079 (2) 0.0478 (16) 0.0112 (14) −0.0015 (13) −0.0181 (15)
C5 0.0551 (17) 0.0610 (18) 0.0542 (17) 0.0122 (14) −0.0091 (14) −0.0082 (14)
C6 0.0439 (14) 0.0570 (17) 0.0457 (15) 0.0029 (12) −0.0043 (12) −0.0018 (13)
C7 0.0491 (16) 0.073 (2) 0.0462 (16) −0.0160 (14) 0.0047 (12) 0.0090 (14)
C8 0.070 (2) 0.106 (3) 0.055 (2) −0.015 (2) 0.0013 (17) −0.0060 (19)
C9 0.062 (2) 0.169 (5) 0.050 (2) −0.014 (3) −0.0069 (17) 0.000 (3)
C10 0.071 (3) 0.146 (5) 0.077 (3) 0.002 (3) 0.001 (2) 0.045 (3)
C11 0.087 (3) 0.091 (3) 0.113 (4) −0.013 (2) −0.016 (3) 0.046 (3)
C12 0.076 (2) 0.067 (2) 0.089 (3) −0.0160 (18) −0.015 (2) 0.0237 (19)
C13 0.0485 (15) 0.0468 (15) 0.0496 (15) −0.0048 (12) −0.0025 (12) 0.0000 (12)
C14 0.0609 (19) 0.092 (3) 0.069 (2) −0.0257 (18) 0.0137 (16) −0.0235 (19)
C15 0.069 (2) 0.099 (3) 0.088 (3) −0.037 (2) 0.006 (2) −0.021 (2)
C16 0.079 (2) 0.068 (2) 0.072 (2) −0.0172 (18) −0.0230 (19) −0.0061 (17)
C17 0.101 (3) 0.080 (2) 0.058 (2) −0.023 (2) 0.0042 (19) −0.0165 (18)
C18 0.072 (2) 0.073 (2) 0.0579 (19) −0.0200 (17) 0.0114 (16) −0.0104 (16)
C19 0.0602 (17) 0.0455 (15) 0.0512 (16) −0.0065 (13) −0.0111 (13) 0.0035 (12)
C20 0.082 (2) 0.0583 (19) 0.093 (3) −0.0176 (17) −0.037 (2) 0.0232 (18)
C21 0.099 (3) 0.082 (3) 0.129 (4) −0.025 (2) −0.068 (3) 0.034 (3)
C22 0.094 (3) 0.083 (3) 0.108 (3) −0.034 (2) −0.045 (3) 0.013 (2)
C23 0.134 (4) 0.066 (2) 0.099 (3) −0.047 (2) −0.046 (3) 0.021 (2)
C24 0.110 (3) 0.0525 (18) 0.084 (2) −0.0237 (19) −0.043 (2) 0.0206 (17)
C25 0.0463 (14) 0.0422 (14) 0.0488 (15) −0.0048 (11) −0.0070 (12) 0.0013 (11)
C26 0.0516 (17) 0.0661 (19) 0.0572 (18) 0.0002 (14) −0.0026 (14) 0.0023 (15)
C27 0.070 (2) 0.089 (3) 0.0562 (19) −0.0098 (18) 0.0051 (16) −0.0014 (17)
C28 0.080 (2) 0.092 (3) 0.0510 (18) −0.023 (2) −0.0165 (17) 0.0097 (17)
C29 0.0622 (19) 0.072 (2) 0.067 (2) −0.0127 (16) −0.0270 (17) 0.0109 (17)
C30 0.0464 (15) 0.0555 (16) 0.0611 (18) −0.0056 (13) −0.0092 (13) 0.0043 (14)
C31 0.0492 (15) 0.0430 (14) 0.0492 (15) −0.0042 (12) 0.0003 (12) −0.0079 (12)
C32 0.0571 (17) 0.0472 (15) 0.0470 (15) −0.0056 (12) 0.0076 (13) −0.0053 (12)
C33 0.0521 (16) 0.0416 (14) 0.0572 (17) −0.0041 (12) 0.0105 (13) 0.0028 (12)
C34 0.0542 (18) 0.065 (2) 0.082 (2) −0.0041 (15) 0.0226 (16) 0.0038 (17)

Geometric parameters (Å, °)

Pd1—C1 1.979 (3) C13—C14 1.376 (4)
Pd1—N1 2.127 (2) C14—C15 1.381 (5)
Pd1—P2 2.2814 (7) C14—H14 0.9300
Pd1—P1 2.2819 (8) C15—C16 1.355 (5)
P1—O1 1.637 (2) C15—H15 0.9300
P1—C13 1.797 (3) C16—C17 1.361 (5)
P1—C7 1.799 (3) C16—H16 0.9300
P2—O2 1.642 (2) C17—C18 1.379 (5)
P2—C19 1.795 (3) C17—H17 0.9300
P2—C25 1.796 (3) C18—H18 0.9300
S1—O4 1.408 (2) C19—C20 1.366 (4)
S1—O3 1.420 (2) C19—C24 1.378 (4)
S1—N1 1.585 (2) C20—C21 1.382 (5)
S1—O5 1.608 (2) C20—H20 0.9300
F1—C4 1.357 (3) C21—C22 1.356 (5)
O1—C2 1.384 (3) C21—H21 0.9300
O2—C6 1.387 (3) C22—C23 1.351 (5)
O5—C33 1.389 (4) C22—H22 0.9300
O6—C31 1.215 (3) C23—C24 1.363 (5)
N1—C31 1.378 (3) C23—H23 0.9300
C1—C6 1.389 (4) C24—H24 0.9300
C1—C2 1.392 (4) C25—C26 1.380 (4)
C2—C3 1.382 (4) C25—C30 1.386 (4)
C3—C4 1.369 (5) C26—C27 1.370 (4)
C3—H3 0.9300 C26—H26 0.9300
C4—C5 1.375 (5) C27—C28 1.381 (5)
C5—C6 1.376 (4) C27—H27 0.9300
C5—H5 0.9300 C28—C29 1.357 (5)
C7—C8 1.384 (5) C28—H28 0.9300
C7—C12 1.385 (5) C29—C30 1.384 (4)
C8—C9 1.399 (6) C29—H29 0.9300
C8—H8 0.9300 C30—H30 0.9300
C9—C10 1.350 (7) C31—C32 1.465 (4)
C9—H9 0.9300 C32—C33 1.316 (4)
C10—C11 1.343 (6) C32—H32 0.9300
C10—H10 0.9300 C33—C34 1.479 (4)
C11—C12 1.378 (5) C34—H34A 0.9600
C11—H11 0.9300 C34—H34B 0.9600
C12—H12 0.9300 C34—H34C 0.9600
C13—C18 1.375 (4)
C1—Pd1—N1 177.21 (10) C14—C13—P1 121.0 (2)
C1—Pd1—P2 79.58 (8) C13—C14—C15 119.8 (3)
N1—Pd1—P2 97.94 (7) C13—C14—H14 120.1
C1—Pd1—P1 79.99 (8) C15—C14—H14 120.1
N1—Pd1—P1 102.47 (7) C16—C15—C14 120.6 (3)
P2—Pd1—P1 159.56 (3) C16—C15—H15 119.7
O1—P1—C13 103.92 (12) C14—C15—H15 119.7
O1—P1—C7 101.87 (13) C15—C16—C17 119.8 (3)
C13—P1—C7 104.64 (14) C15—C16—H16 120.1
O1—P1—Pd1 104.63 (8) C17—C16—H16 120.1
C13—P1—Pd1 118.05 (10) C16—C17—C18 120.6 (3)
C7—P1—Pd1 121.20 (10) C16—C17—H17 119.7
O2—P2—C19 104.21 (13) C18—C17—H17 119.7
O2—P2—C25 102.21 (12) C13—C18—C17 119.8 (3)
C19—P2—C25 105.35 (13) C13—C18—H18 120.1
O2—P2—Pd1 104.98 (8) C17—C18—H18 120.1
C19—P2—Pd1 115.23 (9) C20—C19—C24 117.9 (3)
C25—P2—Pd1 122.61 (9) C20—C19—P2 120.2 (2)
O4—S1—O3 117.70 (16) C24—C19—P2 121.9 (2)
O4—S1—N1 110.61 (13) C19—C20—C21 120.4 (3)
O3—S1—N1 112.39 (15) C19—C20—H20 119.8
O4—S1—O5 105.38 (14) C21—C20—H20 119.8
O3—S1—O5 105.92 (13) C22—C21—C20 120.4 (3)
N1—S1—O5 103.46 (12) C22—C21—H21 119.8
C2—O1—P1 114.26 (17) C20—C21—H21 119.8
C6—O2—P2 113.99 (17) C23—C22—C21 119.6 (4)
C33—O5—S1 115.71 (18) C23—C22—H22 120.2
C31—N1—S1 118.54 (18) C21—C22—H22 120.2
C31—N1—Pd1 119.49 (17) C22—C23—C24 120.4 (3)
S1—N1—Pd1 121.80 (13) C22—C23—H23 119.8
C6—C1—C2 116.5 (2) C24—C23—H23 119.8
C6—C1—Pd1 122.2 (2) C23—C24—C19 121.3 (3)
C2—C1—Pd1 121.3 (2) C23—C24—H24 119.4
C3—C2—O1 118.3 (3) C19—C24—H24 119.4
C3—C2—C1 122.7 (3) C26—C25—C30 119.2 (3)
O1—C2—C1 118.9 (2) C26—C25—P2 119.1 (2)
C4—C3—C2 116.6 (3) C30—C25—P2 121.6 (2)
C4—C3—H3 121.7 C27—C26—C25 120.7 (3)
C2—C3—H3 121.7 C27—C26—H26 119.7
F1—C4—C3 117.3 (3) C25—C26—H26 119.7
F1—C4—C5 118.2 (3) C26—C27—C28 119.9 (3)
C3—C4—C5 124.5 (3) C26—C27—H27 120.1
C4—C5—C6 116.2 (3) C28—C27—H27 120.1
C4—C5—H5 121.9 C29—C28—C27 120.0 (3)
C6—C5—H5 121.9 C29—C28—H28 120.0
C5—C6—O2 118.1 (3) C27—C28—H28 120.0
C5—C6—C1 123.4 (3) C28—C29—C30 120.7 (3)
O2—C6—C1 118.4 (2) C28—C29—H29 119.6
C8—C7—C12 119.0 (3) C30—C29—H29 119.6
C8—C7—P1 118.6 (3) C29—C30—C25 119.6 (3)
C12—C7—P1 122.3 (3) C29—C30—H30 120.2
C7—C8—C9 118.9 (4) C25—C30—H30 120.2
C7—C8—H8 120.5 O6—C31—N1 120.1 (2)
C9—C8—H8 120.5 O6—C31—C32 122.6 (3)
C10—C9—C8 121.0 (4) N1—C31—C32 117.1 (2)
C10—C9—H9 119.5 C33—C32—C31 123.8 (3)
C8—C9—H9 119.5 C33—C32—H32 118.1
C11—C10—C9 120.0 (4) C31—C32—H32 118.1
C11—C10—H10 120.0 C32—C33—O5 121.0 (2)
C9—C10—H10 120.0 C32—C33—C34 128.0 (3)
C10—C11—C12 121.2 (5) O5—C33—C34 111.0 (3)
C10—C11—H11 119.4 C33—C34—H34A 109.5
C12—C11—H11 119.4 C33—C34—H34B 109.5
C11—C12—C7 119.8 (4) H34A—C34—H34B 109.5
C11—C12—H12 120.1 C33—C34—H34C 109.5
C7—C12—H12 120.1 H34A—C34—H34C 109.5
C18—C13—C14 119.4 (3) H34B—C34—H34C 109.5
C18—C13—P1 119.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C23—H23···O3i 0.93 2.42 3.284 (4) 155
C16—H16···O6ii 0.93 2.47 3.284 (4) 146
C10—H10···O4iii 0.93 2.50 3.305 (5) 145
C8—H8···F1iv 0.93 2.48 3.406 (5) 173

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2097).

References

  1. Beck, W., Ambach, E. & Nagel, U. (1985). Chem. Ber. 118, 444–449.
  2. Bulut, A., İçbudak, H., Sezer, G. & Kazak, C. (2005). Acta Cryst. C61, m228–m230. [DOI] [PubMed]
  3. Carter, E. B., Culver, S. L., Fox, P. A., Goode, R. D., Ntai, I., Tickell, M. D., Traylor, R. K., Hoffman, N. W., Davis, J. H. Jr. (2004). Chem. Commun. pp. 630–631. [DOI] [PubMed]
  4. Cavicchioli, M., Massabni, A. C., Heinrich, T. A., Costa-Neto, C. M., Abrao, E. P., Fonseca, B. A. L., Castellano, E. E., Corbi, P. P., Lustri, W. R. & Leite, C. Q. F. (2010). J. Inorg. Biochem. 104, 533–540. [DOI] [PubMed]
  5. Dege, N., Içbudak, H. & Adıyaman, E. (2006). Acta Cryst. C62, m401–m403. [DOI] [PubMed]
  6. Dege, N., Içbudak, H. & Adıyaman, E. (2007). Acta Cryst. C63, m13–m15. [DOI] [PubMed]
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Enraf–Nonius (1993). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands.
  9. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  10. Hoffman, N. W., Stenson, A. C., Sykora, R. E., Traylor, R. K., Wicker, B. F., Reilly, S., Dixon, D. A., Marshall, A. G., Kwan, M.-L. & Schroder, P. (2009). Abstracts, Central Regional Meeting, American Chemical Society, Cleveland, OH, United States, May 20–23, CRM–213.
  11. İçbudak, H., Bulut, A., Çetin, N. & Kazak, C. (2005). Acta Cryst. C61, m1–m3. [DOI] [PubMed]
  12. Kwan, M.-L., Conry, K., Marshall, J., Schroder, P., Hoffman, N., Traylor, R., Wicker, B., Henderson, C., Sykora, R., Davis, J. Jr, Ozerov, O. & Lei, F. (2007). Abstracts, 39th Middle Atlantic Regional Meeting, American Chemical Society, Collegeville, PA, United States, May 16–18, MARM–059.
  13. Lipinsky, G.-R. (2003). Ullman’s Encyclopedia of Industrial Chemistry, 6th ed., Vol. 35, p. 407. Weinheim: Wiley-VCH.
  14. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  15. Şahin, Z. S., İçbudak, H. & Işık, Ş. (2009). Acta Cryst. C65, m463–m465. [DOI] [PubMed]
  16. Şahin, Z. S., Sevindi, F., İçbudak, H. & Işık, Ş. (2010). Acta Cryst. C66, m314–m318. [DOI] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  19. Wicker, B., Traylor, R., Henderson, C., Hoffman, N., Sykora, R., Davis, J. H. Jr, Jordan, B., Abernethy, J., Ozerov, O., Fafard, C., Lei, F., Kwan, M.-L. & Poleski, K. (2007). Abstracts of Papers, 233rd National Meeting, American Chemical Society, Chicago, IL, United States, March 25–29, INOR–972.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002911/gw2097sup1.cif

e-67-0m286-sup1.cif (24.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002911/gw2097Isup2.hkl

e-67-0m286-Isup2.hkl (291.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES