Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 22;67(Pt 2):m246. doi: 10.1107/S1600536811001747

Bis[2-(4-hy­droxy­phen­yl)acetato-κO]bis­(1,10-phenanthroline-κ2 N,N′)cadmium penta­hydrate

Yu-Ye Yu a,*
PMCID: PMC3051641  PMID: 21522901

Abstract

In the title compound, [Cd(C8H7O3)2(C12H8N2)2]·5H2O, the CdII ion is six-coordinated by two carboxylate O atoms of monodentate 2-(4-hy­droxy­phen­yl)acetate ligands and by four N atoms from two chelating 1,10-phenantroline ligands in a distorted trigonal–prismatic geometry. O—H⋯O hydrogen bonds between water mol­ecules and the complex mol­ecules result in the formation of a three-dimensional network. Four water mol­ecules act as single acceptors and double donors while the fifth water mol­ecule is involved as a single acceptor and single donor in an O—H⋯O inter­action and as a donor in an O—H⋯π inter­action.

Related literature

For metal complexes derived from carb­oxy­lic acids, see: Fang & Zhang (2006); Pan et al. (2006); Wang & Sevov (2008); Wang et al. (2010); Liu et al. (2010).graphic file with name e-67-0m246-scheme1.jpg

Experimental

Crystal data

  • [Cd(C8H7O3)2(C12H8N2)2]·5H2O

  • M r = 865.17

  • Triclinic, Inline graphic

  • a = 11.020 (1) Å

  • b = 11.341 (1) Å

  • c = 16.554 (2) Å

  • α = 86.170 (1)°

  • β = 77.537 (1)°

  • γ = 70.836 (1)°

  • V = 1908.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 296 K

  • 0.31 × 0.29 × 0.11 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.823, T max = 0.930

  • 28812 measured reflections

  • 8705 independent reflections

  • 7876 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.067

  • S = 1.04

  • 8705 reflections

  • 505 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001747/gk2315sup1.cif

e-67-0m246-sup1.cif (41.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001747/gk2315Isup2.hkl

e-67-0m246-Isup2.hkl (425.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg5 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4i 0.82 1.82 2.641 (2) 175
O6—H6A⋯O4Wii 0.82 1.87 2.670 (3) 164
O1W—H1WA⋯O5iii 0.83 1.93 2.756 (2) 177
O1W—H1WB⋯O6ii 0.77 2.03 2.798 (3) 177
O2W—H2WA⋯O1iv 0.81 2.01 2.812 (2) 168
O2W—H2WB⋯O1W 0.76 2.04 2.769 (3) 160
O3W—H3WA⋯O3i 0.84 2.02 2.817 (3) 158
O3W—H3WB⋯O2W 0.82 1.94 2.712 (3) 155
O4W—H4WB⋯O5W 0.87 1.82 2.682 (3) 168
O5W—H5WB⋯O2 0.84 1.92 2.756 (2) 176
O5W—H5WA⋯O3W 0.92 1.87 2.737 (3) 157
O4W—H4WACg5v 0.82 2.85 3.583 (2) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

supplementary crystallographic information

Comment

The design and synthesis of carboxylic metal-organic complexes have been of increasing interest for decades owing to their potential practical applications including fluorescence and magnetism (Wang, et al., 2010; Fang, et al., 2006; Wang, et al., 2008). We have worked at it before (Liu, et al., 2010). In the paper, we report the crystal structure of a new cadmiun(II) complex with p- hydroxyphenylacetic acid and 1,10-phenanthroline.

The structure of the complex is shown in Fig.1, which shows that the Cd(II) atom is coordinated by two p-hydroxyphenylacetate(PAA) anions and two 1,10-phenanthroline (phen)ligands. The monodentate PAA anions coordinate to the Cd(II) ion in an approximate trans configuration, their benzene rings being nearly parallel to each other. The phen acts as a chelate ligand via the N atoms, while the carboxylate ligand has one carboxylate groups,behaving as a monodentate site through the deprotonated O atom. The coordination geometry can be described as a distorted trigonal prism. The coordination compound is built up by a pair of PAA anions using carboxylate oxygen atoms (Cd—O2=2.3222 (15) Å,Cd—O5=2.3676 (16) Å) and by a pair of neutral 1,10-phenanthroline molecules using nitrogen atoms(Cd—N1= 2.4522 (17) Å,Cd—N2=2.3577 (16) Å,Cd—N3=2.4472 (17) Å,Cd—N4=2.3786 (18) Å)in trans positions(Pan, et al., 2006).

The packing plot is shown in Fig.2. The most significant forces contribulting the formation and stabilization of the crystal are O—H···O hydrogen bonds and weak π···π aromatic interactions between phen molecules and aromatic rings of the carboxylate ligands.

Experimental

All reagents were of analytical grade and were used without further purification. 4-Hydroxyphenylacetic acid (0.152 g, 1 mmol) and 1,10- phenanthroline (0.1982 g, 1 mmol) were added to a solution of Cd(OH)2 (0.146 g,1 mmol) in 10 ml e thanol. The solution was stirred at 343 K for 12 days, and then 10 ml of ethanol were added. A wite deposit was formed within a few minutes that was kept for 12 days at 313 K. The deposit was filtered off and colorless solution was slowly evaporated resulting in formation of colorless single crystals of the title compound within 5 days.

Refinement

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model approximation [CH(methylene)=0.97 Å, Uiso(H) = 1.2Ueq(C); aromatic C—H = 0.93 Å,Uiso(H) = 1.2 Ueq(C)]. Water and hydroxylic H atoms were located in difference Fourier maps and refined as riding on their carrier atoms with Uiso(H) = 1.5Ueq(O). Seven rigid-bond restraints to Uij-values of Co and the coordinating O and N atoms were imposed via SHELXL97 DELU instructions.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the complex.

Crystal data

[Cd(C8H7O3)2(C12H8N2)2]·5H2O Z = 2
Mr = 865.17 F(000) = 888
Triclinic, P1 Dx = 1.506 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.020 (1) Å Cell parameters from 9977 reflections
b = 11.341 (1) Å θ = 1.3–27.7°
c = 16.554 (2) Å µ = 0.64 mm1
α = 86.170 (1)° T = 296 K
β = 77.537 (1)° Block, colourless
γ = 70.836 (1)° 0.31 × 0.29 × 0.11 mm
V = 1908.2 (3) Å3

Data collection

Bruker APEXII area-detector diffractometer 8705 independent reflections
Radiation source: fine-focus sealed tube 7876 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 27.7°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.823, Tmax = 0.930 k = −14→14
28812 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.6164P] where P = (Fo2 + 2Fc2)/3
8705 reflections (Δ/σ)max = 0.002
505 parameters Δρmax = 0.60 e Å3
7 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd 0.921272 (12) 0.297983 (12) 0.262351 (7) 0.03811 (5)
N1 1.09784 (15) 0.16075 (14) 0.32637 (9) 0.0420 (3)
N2 0.85159 (15) 0.29728 (14) 0.40757 (9) 0.0429 (3)
N3 0.85430 (16) 0.32506 (15) 0.12900 (9) 0.0434 (3)
N4 1.09251 (15) 0.32116 (15) 0.15377 (9) 0.0437 (3)
O1 0.98347 (13) 0.49440 (13) 0.30979 (9) 0.0518 (3)
O1W 0.09649 (18) 0.88079 (17) 0.19886 (11) 0.0813 (5)
H1WA 0.0371 0.9464 0.2152 0.122*
H1WB 0.1537 0.8990 0.1722 0.122*
O2 0.79307 (13) 0.50615 (12) 0.28232 (8) 0.0479 (3)
O2W 0.15247 (16) 0.63322 (18) 0.24663 (11) 0.0727 (4)
H2WA 0.1051 0.5953 0.2718 0.109*
H2WB 0.1219 0.7036 0.2420 0.109*
O3 0.56429 (16) 0.71568 (16) 0.67907 (9) 0.0653 (4)
H3A 0.4843 0.7357 0.6849 0.098*
O3W 0.41174 (18) 0.5009 (2) 0.22350 (13) 0.0895 (6)
H3WA 0.4111 0.4504 0.2630 0.134*
H3WB 0.3415 0.5578 0.2335 0.134*
O4 0.69434 (15) 0.21911 (14) 0.29253 (9) 0.0568 (4)
O4W 0.52550 (19) 0.82720 (19) 0.14562 (13) 0.0908 (6)
H4WA 0.5898 0.8509 0.1342 0.136*
H4WB 0.5441 0.7687 0.1822 0.136*
O5 0.89776 (14) 0.10086 (13) 0.24775 (9) 0.0507 (3)
O5W 0.5459 (2) 0.6477 (2) 0.26075 (17) 0.1118 (8)
H5WB 0.6203 0.6061 0.2698 0.168*
H5WA 0.5178 0.5820 0.2545 0.168*
O6 0.69850 (16) 0.05348 (17) −0.09615 (9) 0.0695 (4)
H6A 0.6235 0.0923 −0.1015 0.104*
C1 0.7764 (2) 0.11842 (18) 0.26384 (11) 0.0443 (4)
C2 0.7300 (2) 0.0149 (2) 0.24301 (13) 0.0556 (5)
H2A 0.6451 0.0219 0.2780 0.067*
H2B 0.7914 −0.0653 0.2534 0.067*
C3 0.7190 (2) 0.02282 (18) 0.15278 (12) 0.0471 (4)
C4 0.8299 (2) −0.02101 (19) 0.09063 (14) 0.0544 (5)
H4A 0.9111 −0.0584 0.1049 0.065*
C5 0.8224 (2) −0.0104 (2) 0.00855 (14) 0.0560 (5)
H5A 0.8982 −0.0395 −0.0320 0.067*
C6 0.7025 (2) 0.04348 (19) −0.01398 (12) 0.0495 (4)
C7 0.5906 (2) 0.0863 (2) 0.04668 (13) 0.0524 (5)
H7A 0.5092 0.1215 0.0322 0.063*
C8 0.5997 (2) 0.0769 (2) 0.12918 (13) 0.0530 (5)
H8A 0.5240 0.1076 0.1696 0.064*
C9 0.86740 (18) 0.55353 (17) 0.30747 (10) 0.0404 (4)
C10 0.8083 (2) 0.68753 (17) 0.33848 (12) 0.0457 (4)
H10A 0.8769 0.7257 0.3308 0.055*
H10B 0.7444 0.7344 0.3063 0.055*
C11 0.74249 (18) 0.69351 (16) 0.42914 (11) 0.0413 (4)
C12 0.6094 (2) 0.7498 (2) 0.45409 (13) 0.0591 (5)
H12A 0.5593 0.7836 0.4145 0.071*
C13 0.5483 (2) 0.7572 (2) 0.53676 (13) 0.0637 (6)
H13A 0.4580 0.7957 0.5521 0.076*
C14 0.6205 (2) 0.70798 (19) 0.59631 (12) 0.0490 (4)
C15 0.7538 (2) 0.6497 (2) 0.57256 (12) 0.0509 (5)
H15A 0.8035 0.6150 0.6122 0.061*
C16 0.81361 (19) 0.64290 (19) 0.48983 (12) 0.0485 (4)
H16A 0.9037 0.6034 0.4745 0.058*
C17 1.2147 (2) 0.08956 (19) 0.28732 (13) 0.0528 (5)
H17A 1.2354 0.0929 0.2299 0.063*
C18 1.3081 (2) 0.0099 (2) 0.32820 (16) 0.0655 (6)
H18A 1.3892 −0.0384 0.2986 0.079*
C19 1.2784 (2) 0.0042 (2) 0.41199 (16) 0.0646 (6)
H19A 1.3405 −0.0468 0.4403 0.078*
C20 1.1556 (2) 0.07441 (19) 0.45566 (13) 0.0513 (5)
C21 1.1149 (3) 0.0674 (2) 0.54353 (14) 0.0646 (6)
H21A 1.1735 0.0156 0.5738 0.078*
C22 0.9952 (3) 0.1335 (2) 0.58284 (13) 0.0649 (6)
H22A 0.9717 0.1263 0.6399 0.078*
C23 0.9022 (2) 0.2150 (2) 0.53929 (11) 0.0522 (5)
C24 0.7749 (3) 0.2854 (2) 0.57780 (13) 0.0643 (6)
H24A 0.7481 0.2820 0.6349 0.077*
C25 0.6904 (2) 0.3586 (2) 0.53231 (14) 0.0646 (6)
H25A 0.6058 0.4057 0.5577 0.078*
C26 0.7324 (2) 0.3620 (2) 0.44643 (13) 0.0551 (5)
H26A 0.6739 0.4119 0.4154 0.066*
C27 0.93710 (19) 0.22480 (17) 0.45242 (10) 0.0414 (4)
C28 1.06665 (19) 0.15289 (16) 0.40979 (11) 0.0406 (4)
C29 1.2023 (2) 0.3332 (2) 0.16604 (13) 0.0524 (5)
H29A 1.2139 0.3319 0.2201 0.063*
C30 1.3013 (2) 0.3478 (2) 0.10237 (14) 0.0591 (5)
H30A 1.3773 0.3558 0.1137 0.071*
C31 1.2851 (2) 0.3500 (2) 0.02283 (14) 0.0583 (5)
H31A 1.3513 0.3574 −0.0207 0.070*
C32 1.1692 (2) 0.34120 (18) 0.00681 (11) 0.0480 (4)
C33 1.1421 (2) 0.3504 (2) −0.07470 (12) 0.0585 (6)
H33A 1.2055 0.3587 −0.1199 0.070*
C34 1.0270 (2) 0.3472 (2) −0.08689 (12) 0.0576 (5)
H34A 1.0125 0.3522 −0.1405 0.069*
C35 0.9262 (2) 0.33649 (17) −0.01936 (11) 0.0473 (4)
C36 0.8020 (2) 0.3417 (2) −0.02921 (13) 0.0574 (5)
H36A 0.7843 0.3453 −0.0819 0.069*
C37 0.7069 (2) 0.3415 (2) 0.03854 (14) 0.0589 (5)
H37A 0.6232 0.3465 0.0328 0.071*
C38 0.7372 (2) 0.3336 (2) 0.11663 (13) 0.0534 (5)
H38A 0.6713 0.3343 0.1626 0.064*
C39 0.94879 (19) 0.32743 (16) 0.06202 (10) 0.0410 (4)
C40 1.07354 (18) 0.32791 (16) 0.07513 (10) 0.0412 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd 0.04353 (8) 0.03857 (8) 0.02888 (7) −0.00945 (6) −0.00605 (5) −0.00080 (5)
N1 0.0494 (8) 0.0401 (8) 0.0362 (7) −0.0122 (6) −0.0113 (6) −0.0016 (6)
N2 0.0510 (9) 0.0438 (8) 0.0333 (6) −0.0173 (7) −0.0040 (6) −0.0008 (6)
N3 0.0524 (9) 0.0436 (9) 0.0339 (7) −0.0165 (7) −0.0077 (6) 0.0043 (6)
N4 0.0493 (8) 0.0443 (9) 0.0345 (7) −0.0131 (7) −0.0044 (6) −0.0035 (6)
O1 0.0432 (7) 0.0480 (8) 0.0589 (8) −0.0097 (6) −0.0054 (6) −0.0065 (6)
O1W 0.0756 (12) 0.0716 (12) 0.0743 (11) 0.0018 (9) −0.0069 (9) −0.0048 (9)
O2 0.0553 (8) 0.0398 (6) 0.0501 (7) −0.0133 (6) −0.0174 (6) −0.0004 (5)
O2W 0.0627 (10) 0.0828 (12) 0.0755 (11) −0.0294 (9) −0.0132 (8) 0.0067 (9)
O3 0.0609 (9) 0.0822 (11) 0.0429 (8) −0.0134 (8) −0.0043 (7) −0.0031 (7)
O3W 0.0661 (11) 0.0913 (14) 0.1104 (15) −0.0253 (10) −0.0219 (10) 0.0169 (12)
O4 0.0601 (9) 0.0574 (9) 0.0463 (7) −0.0142 (7) −0.0026 (6) −0.0064 (6)
O4W 0.0813 (13) 0.0856 (14) 0.1083 (16) −0.0318 (11) −0.0225 (11) 0.0170 (11)
O5 0.0506 (8) 0.0453 (7) 0.0575 (8) −0.0149 (6) −0.0145 (6) 0.0001 (6)
O5W 0.0835 (14) 0.0992 (16) 0.166 (2) −0.0272 (12) −0.0632 (15) 0.0193 (15)
O6 0.0626 (10) 0.0939 (13) 0.0498 (8) −0.0186 (9) −0.0159 (7) −0.0048 (8)
C1 0.0549 (11) 0.0462 (11) 0.0346 (8) −0.0199 (9) −0.0114 (8) 0.0077 (7)
C2 0.0693 (14) 0.0537 (12) 0.0538 (11) −0.0328 (11) −0.0165 (10) 0.0113 (9)
C3 0.0566 (11) 0.0387 (10) 0.0523 (11) −0.0222 (9) −0.0142 (9) 0.0016 (8)
C4 0.0509 (11) 0.0451 (11) 0.0645 (13) −0.0069 (9) −0.0192 (10) −0.0028 (9)
C5 0.0486 (11) 0.0544 (12) 0.0572 (12) −0.0065 (9) −0.0068 (9) −0.0109 (9)
C6 0.0512 (11) 0.0476 (11) 0.0505 (11) −0.0152 (9) −0.0120 (9) −0.0050 (8)
C7 0.0447 (10) 0.0552 (12) 0.0577 (12) −0.0141 (9) −0.0133 (9) −0.0028 (9)
C8 0.0486 (11) 0.0561 (12) 0.0542 (11) −0.0194 (9) −0.0049 (9) −0.0042 (9)
C9 0.0485 (10) 0.0375 (9) 0.0323 (8) −0.0136 (8) −0.0035 (7) 0.0026 (7)
C10 0.0509 (11) 0.0354 (9) 0.0475 (10) −0.0136 (8) −0.0038 (8) 0.0008 (7)
C11 0.0437 (9) 0.0335 (9) 0.0457 (9) −0.0128 (7) −0.0046 (7) −0.0054 (7)
C12 0.0474 (11) 0.0693 (14) 0.0483 (11) −0.0016 (10) −0.0118 (9) 0.0016 (10)
C13 0.0414 (11) 0.0802 (16) 0.0521 (12) 0.0001 (10) −0.0032 (9) −0.0027 (11)
C14 0.0495 (11) 0.0499 (11) 0.0446 (10) −0.0134 (9) −0.0060 (8) −0.0060 (8)
C15 0.0491 (11) 0.0541 (12) 0.0504 (11) −0.0133 (9) −0.0166 (9) −0.0021 (9)
C16 0.0384 (9) 0.0481 (11) 0.0563 (11) −0.0094 (8) −0.0091 (8) −0.0075 (9)
C17 0.0549 (12) 0.0485 (11) 0.0499 (11) −0.0088 (9) −0.0107 (9) −0.0052 (9)
C18 0.0547 (13) 0.0549 (14) 0.0797 (16) −0.0058 (10) −0.0165 (11) −0.0023 (11)
C19 0.0658 (14) 0.0528 (13) 0.0791 (16) −0.0124 (11) −0.0369 (12) 0.0115 (11)
C20 0.0696 (13) 0.0458 (11) 0.0511 (11) −0.0262 (10) −0.0290 (10) 0.0087 (8)
C21 0.0953 (19) 0.0643 (14) 0.0533 (12) −0.0381 (14) −0.0414 (13) 0.0193 (11)
C22 0.105 (2) 0.0755 (16) 0.0346 (10) −0.0518 (15) −0.0259 (11) 0.0135 (10)
C23 0.0796 (14) 0.0577 (12) 0.0328 (9) −0.0408 (11) −0.0105 (9) 0.0011 (8)
C24 0.0872 (17) 0.0794 (16) 0.0338 (9) −0.0463 (14) 0.0050 (10) −0.0082 (10)
C25 0.0656 (14) 0.0715 (15) 0.0514 (12) −0.0265 (12) 0.0107 (10) −0.0152 (11)
C26 0.0553 (12) 0.0559 (12) 0.0477 (11) −0.0157 (10) 0.0001 (9) −0.0029 (9)
C27 0.0593 (11) 0.0411 (10) 0.0320 (8) −0.0268 (9) −0.0102 (7) 0.0008 (7)
C28 0.0556 (11) 0.0366 (9) 0.0386 (9) −0.0221 (8) −0.0176 (8) 0.0023 (7)
C29 0.0537 (12) 0.0532 (12) 0.0479 (10) −0.0136 (9) −0.0094 (9) −0.0066 (9)
C30 0.0481 (11) 0.0593 (13) 0.0664 (14) −0.0163 (10) −0.0032 (10) −0.0105 (10)
C31 0.0539 (12) 0.0534 (13) 0.0562 (12) −0.0139 (10) 0.0088 (9) −0.0054 (9)
C32 0.0533 (11) 0.0388 (10) 0.0421 (9) −0.0092 (8) 0.0028 (8) −0.0027 (7)
C33 0.0724 (15) 0.0553 (13) 0.0341 (9) −0.0137 (11) 0.0068 (9) 0.0014 (8)
C34 0.0755 (15) 0.0580 (13) 0.0307 (9) −0.0134 (11) −0.0062 (9) 0.0018 (8)
C35 0.0659 (12) 0.0369 (10) 0.0351 (9) −0.0111 (9) −0.0106 (8) 0.0005 (7)
C36 0.0780 (15) 0.0534 (12) 0.0458 (11) −0.0212 (11) −0.0245 (10) 0.0051 (9)
C37 0.0640 (13) 0.0610 (14) 0.0603 (13) −0.0263 (11) −0.0245 (11) 0.0117 (10)
C38 0.0568 (12) 0.0558 (12) 0.0493 (11) −0.0223 (10) −0.0109 (9) 0.0098 (9)
C39 0.0549 (11) 0.0314 (9) 0.0329 (8) −0.0105 (8) −0.0062 (7) 0.0000 (6)
C40 0.0512 (10) 0.0321 (9) 0.0331 (8) −0.0080 (8) −0.0015 (7) −0.0025 (6)

Geometric parameters (Å, °)

Cd—O2 2.3221 (13) C10—H10B 0.9700
Cd—N2 2.3609 (14) C11—C12 1.374 (3)
Cd—O5 2.3672 (14) C11—C16 1.386 (3)
Cd—N4 2.3790 (15) C12—C13 1.384 (3)
Cd—N3 2.4447 (15) C12—H12A 0.9300
Cd—N1 2.4522 (15) C13—C14 1.375 (3)
Cd—O1 2.7419 (14) C13—H13A 0.9300
Cd—O4 2.8591 (15) C14—C15 1.378 (3)
N1—C17 1.325 (2) C15—C16 1.381 (3)
N1—C28 1.354 (2) C15—H15A 0.9300
N2—C26 1.320 (3) C16—H16A 0.9300
N2—C27 1.352 (2) C17—C18 1.393 (3)
N3—C38 1.322 (3) C17—H17A 0.9300
N3—C39 1.353 (2) C18—C19 1.357 (3)
N4—C29 1.320 (3) C18—H18A 0.9300
N4—C40 1.356 (2) C19—C20 1.391 (3)
O1—C9 1.242 (2) C19—H19A 0.9300
O1W—H1WA 0.8283 C20—C28 1.410 (3)
O1W—H1WB 0.7668 C20—C21 1.432 (3)
O2—C9 1.265 (2) C21—C22 1.331 (4)
O2W—H2WA 0.8134 C21—H21A 0.9300
O2W—H2WB 0.7638 C22—C23 1.426 (3)
O3—C14 1.372 (2) C22—H22A 0.9300
O3—H3A 0.8200 C23—C24 1.400 (3)
O3W—H3WA 0.8409 C23—C27 1.413 (2)
O3W—H3WB 0.8210 C24—C25 1.354 (4)
O4—C1 1.248 (2) C24—H24A 0.9300
O4W—H4WA 0.8194 C25—C26 1.399 (3)
O4W—H4WB 0.8719 C25—H25A 0.9300
O5—C1 1.256 (2) C26—H26A 0.9300
O5W—H5WB 0.8405 C27—C28 1.442 (3)
O5W—H5WA 0.9152 C29—C30 1.388 (3)
O6—C6 1.366 (2) C29—H29A 0.9300
O6—H6A 0.8200 C30—C31 1.364 (3)
C1—C2 1.511 (3) C30—H30A 0.9300
C2—C3 1.519 (3) C31—C32 1.395 (3)
C2—H2A 0.9700 C31—H31A 0.9300
C2—H2B 0.9700 C32—C40 1.407 (2)
C3—C8 1.385 (3) C32—C33 1.434 (3)
C3—C4 1.388 (3) C33—C34 1.338 (3)
C4—C5 1.374 (3) C33—H33A 0.9300
C4—H4A 0.9300 C34—C35 1.426 (3)
C5—C6 1.381 (3) C34—H34A 0.9300
C5—H5A 0.9300 C35—C36 1.395 (3)
C6—C7 1.380 (3) C35—C39 1.413 (2)
C7—C8 1.386 (3) C36—C37 1.361 (3)
C7—H7A 0.9300 C36—H36A 0.9300
C8—H8A 0.9300 C37—C38 1.393 (3)
C9—C10 1.519 (3) C37—H37A 0.9300
C10—C11 1.515 (2) C38—H38A 0.9300
C10—H10A 0.9700 C39—C40 1.439 (3)
O2—Cd—N2 80.97 (5) C16—C11—C10 121.53 (17)
O2—Cd—O5 139.64 (5) C11—C12—C13 121.49 (19)
N2—Cd—O5 92.60 (5) C11—C12—H12A 119.3
O2—Cd—N4 99.31 (5) C13—C12—H12A 119.3
N2—Cd—N4 143.65 (5) C14—C13—C12 120.21 (19)
O5—Cd—N4 108.46 (5) C14—C13—H13A 119.9
O2—Cd—N3 83.91 (5) C12—C13—H13A 119.9
N2—Cd—N3 146.00 (5) O3—C14—C13 122.12 (18)
O5—Cd—N3 79.64 (5) O3—C14—C15 118.63 (18)
N4—Cd—N3 68.89 (5) C13—C14—C15 119.24 (18)
O2—Cd—N1 133.16 (5) C14—C15—C16 119.94 (18)
N2—Cd—N1 69.41 (5) C14—C15—H15A 120.0
O5—Cd—N1 78.78 (5) C16—C15—H15A 120.0
N4—Cd—N1 85.63 (5) C15—C16—C11 121.53 (18)
N3—Cd—N1 139.01 (5) C15—C16—H16A 119.2
O2—Cd—O1 50.72 (4) C11—C16—H16A 119.2
N2—Cd—O1 77.84 (5) N1—C17—C18 123.1 (2)
O5—Cd—O1 165.14 (5) N1—C17—H17A 118.4
N4—Cd—O1 74.83 (5) C18—C17—H17A 118.4
N3—Cd—O1 114.60 (5) C19—C18—C17 118.8 (2)
N1—Cd—O1 87.15 (5) C19—C18—H18A 120.6
O2—Cd—O4 91.80 (5) C17—C18—H18A 120.6
N2—Cd—O4 74.21 (5) C18—C19—C20 120.3 (2)
O5—Cd—O4 48.54 (4) C18—C19—H19A 119.9
N4—Cd—O4 141.63 (5) C20—C19—H19A 119.9
N3—Cd—O4 76.03 (5) C19—C20—C28 117.51 (19)
N1—Cd—O4 112.79 (5) C19—C20—C21 123.2 (2)
O1—Cd—O4 136.30 (4) C28—C20—C21 119.2 (2)
C17—N1—C28 118.24 (16) C22—C21—C20 121.5 (2)
C17—N1—Cd 126.59 (13) C22—C21—H21A 119.3
C28—N1—Cd 115.02 (12) C20—C21—H21A 119.3
C26—N2—C27 118.82 (16) C21—C22—C23 121.40 (19)
C26—N2—Cd 123.00 (13) C21—C22—H22A 119.3
C27—N2—Cd 118.16 (12) C23—C22—H22A 119.3
C38—N3—C39 117.93 (16) C24—C23—C27 117.1 (2)
C38—N3—Cd 126.23 (13) C24—C23—C22 123.47 (19)
C39—N3—Cd 115.81 (12) C27—C23—C22 119.4 (2)
C29—N4—C40 118.20 (16) C25—C24—C23 120.35 (19)
C29—N4—Cd 123.74 (13) C25—C24—H24A 119.8
C40—N4—Cd 118.00 (12) C23—C24—H24A 119.8
C9—O1—Cd 83.41 (11) C24—C25—C26 118.9 (2)
H1WA—O1W—H1WB 107.2 C24—C25—H25A 120.6
C9—O2—Cd 102.66 (11) C26—C25—H25A 120.6
H2WA—O2W—H2WB 117.5 N2—C26—C25 122.8 (2)
C14—O3—H3A 109.5 N2—C26—H26A 118.6
H3WA—O3W—H3WB 106.8 C25—C26—H26A 118.6
C1—O4—Cd 82.56 (12) N2—C27—C23 122.01 (18)
H4WA—O4W—H4WB 104.7 N2—C27—C28 118.77 (15)
C1—O5—Cd 105.88 (12) C23—C27—C28 119.20 (18)
H5WB—O5W—H5WA 97.6 N1—C28—C20 122.03 (18)
C6—O6—H6A 109.5 N1—C28—C27 118.64 (16)
O4—C1—O5 122.44 (18) C20—C28—C27 119.31 (17)
O4—C1—C2 119.67 (19) N4—C29—C30 123.4 (2)
O5—C1—C2 117.82 (18) N4—C29—H29A 118.3
C1—C2—C3 110.21 (16) C30—C29—H29A 118.3
C1—C2—H2A 109.6 C31—C30—C29 118.8 (2)
C3—C2—H2A 109.6 C31—C30—H30A 120.6
C1—C2—H2B 109.6 C29—C30—H30A 120.6
C3—C2—H2B 109.6 C30—C31—C32 120.01 (19)
H2A—C2—H2B 108.1 C30—C31—H31A 120.0
C8—C3—C4 117.58 (19) C32—C31—H31A 120.0
C8—C3—C2 121.69 (19) C31—C32—C40 117.40 (18)
C4—C3—C2 120.70 (19) C31—C32—C33 123.10 (19)
C5—C4—C3 121.46 (19) C40—C32—C33 119.5 (2)
C5—C4—H4A 119.3 C34—C33—C32 121.14 (19)
C3—C4—H4A 119.3 C34—C33—H33A 119.4
C4—C5—C6 120.3 (2) C32—C33—H33A 119.4
C4—C5—H5A 119.9 C33—C34—C35 121.35 (19)
C6—C5—H5A 119.9 C33—C34—H34A 119.3
O6—C6—C7 121.77 (19) C35—C34—H34A 119.3
O6—C6—C5 118.83 (19) C36—C35—C39 117.69 (18)
C7—C6—C5 119.40 (19) C36—C35—C34 122.86 (18)
C6—C7—C8 119.80 (19) C39—C35—C34 119.3 (2)
C6—C7—H7A 120.1 C37—C36—C35 119.80 (19)
C8—C7—H7A 120.1 C37—C36—H36A 120.1
C3—C8—C7 121.48 (19) C35—C36—H36A 120.1
C3—C8—H8A 119.3 C36—C37—C38 118.8 (2)
C7—C8—H8A 119.3 C36—C37—H37A 120.6
O1—C9—O2 122.91 (17) C38—C37—H37A 120.6
O1—C9—C10 119.66 (17) N3—C38—C37 123.7 (2)
O2—C9—C10 117.40 (16) N3—C38—H38A 118.2
C11—C10—C9 111.22 (15) C37—C38—H38A 118.2
C11—C10—H10A 109.4 N3—C39—C35 122.14 (18)
C9—C10—H10A 109.4 N3—C39—C40 118.36 (15)
C11—C10—H10B 109.4 C35—C39—C40 119.41 (17)
C9—C10—H10B 109.4 N4—C40—C32 122.17 (18)
H10A—C10—H10B 108.0 N4—C40—C39 118.49 (15)
C12—C11—C16 117.57 (18) C32—C40—C39 119.27 (16)
C12—C11—C10 120.90 (17)

Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C3–C8 ring.
D—H···A D—H H···A D···A D—H···A
O3—H3A···O4i 0.82 1.82 2.641 (2) 175
O6—H6A···O4Wii 0.82 1.87 2.670 (3) 164
O1W—H1WA···O5iii 0.83 1.93 2.756 (2) 177
O1W—H1WB···O6ii 0.77 2.03 2.798 (3) 177
O2W—H2WA···O1iv 0.81 2.01 2.812 (2) 168
O2W—H2WB···O1W 0.76 2.04 2.769 (3) 160
O3W—H3WA···O3i 0.84 2.02 2.817 (3) 158
O3W—H3WB···O2W 0.82 1.94 2.712 (3) 155
O4W—H4WB···O5W 0.87 1.82 2.682 (3) 168
O5W—H5WB···O2 0.84 1.92 2.756 (2) 176
O5W—H5WA···O3W 0.92 1.87 2.737 (3) 157
O4W—H4WA···Cg5v 0.82 2.85 3.583 (2) 151

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) x−1, y+1, z; (iv) x−1, y, z; (v) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2315).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Fang, R.-Q. & Zhang, X.-M. (2006). Inorg. Chem. 45, 4801–4810. [DOI] [PubMed]
  3. Liu, J.-L., Li, H.-Q. & Zhao, G.-L. (2010). Acta Cryst. E66, m9.
  4. Pan, T.-T., Liu, J.-G. & Xu, D.-J. (2006). Acta Cryst. E62, m1597–m1599.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wang, G.-H., Lei, Y.-Q. & Wang, N. (2010). Cryst. Growth Des. 10, 4060–4067.
  8. Wang, X.-X. & Sevov, S. (2008). Inorg. Chem. 47, 1037–1043. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001747/gk2315sup1.cif

e-67-0m246-sup1.cif (41.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001747/gk2315Isup2.hkl

e-67-0m246-Isup2.hkl (425.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES