Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 26;67(Pt 2):o485. doi: 10.1107/S1600536811002601

Methyl 3,5,5,6,8,8-hexa­methyl-5,6,7,8-tetra­hydro­naphthalene-2-carboxyl­ate (AHTN–COOMe)

Paul Kuhlich a, Franziska Emmerling a,*, Christian Piechotta a, Irene Nehls a
PMCID: PMC3051644  PMID: 21523141

Abstract

Crystals of the title compound, C18H26O2, were grown from ethyl acetate. Due to the racemic precursor, the title compound is also obtained as a racemate. Disorder was observed during structure refinement, originating from two possible half-chair conformations of the non-aromatic ring. The disorder was refined by introducing split positions in the cyclo-hexane ring regarding the two possible R and S-enantiomers at the chiral CH group [ratio 0.744 (3):0.256 (3)]. The crystal structure features pairs of inversion-related molecules connected by pairs of non-classical C—H⋯O hydrogen bonds.

Related literature

For the occurrence of the title compound in human breast milk and the fatty tissue of fish, see: Valdersnes et al. (2006). The title compound is the product of an esterification of 3,5,5,6,8,8-hexa­methyl-5,6,7,8-tetra­hydro­naphthalene-2-carb­oxy­lic acid (AHTN—COOH) with methanol. For the synthesis of the acid, see: Kuhlich et al. (2010); Valdersnes et al. (2006). For the crystal structures of AHTN and AHTN–COOH, see: De Ridder et al. (1990) and Kuhlich et al. (2010), respectively. For the environmental occurrence and estrogenic activity of AHTN, see: Heberer (2003); Bitsch et al. (2002). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-67-0o485-scheme1.jpg

Experimental

Crystal data

  • C18H26O2

  • M r = 274.39

  • Monoclinic, Inline graphic

  • a = 11.5049 (11) Å

  • b = 11.9482 (5) Å

  • c = 12.1078 (13) Å

  • β = 102.612 (5)°

  • V = 1624.2 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.55 mm−1

  • T = 193 K

  • 0.45 × 0.40 × 0.30 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • 5083 measured reflections

  • 3062 independent reflections

  • 2856 reflections with I > 2σ(I)

  • R int = 0.047

  • 3 standard reflections every 60 min intensity decay: 3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.152

  • S = 1.03

  • 3062 reflections

  • 216 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002601/zl2346sup1.cif

e-67-0o485-sup1.cif (25.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002601/zl2346Isup2.hkl

e-67-0o485-Isup2.hkl (150.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H26⋯O2i 0.98 2.47 3.397 (2) 157

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors want to thank Dr Dietmar Pfeifer (BAM, Berlin) for a helpful discussion regarding the inter­pretation of the NMR data.

supplementary crystallographic information

Comment

The title compound is the product of an esterification of 3,5,5,6,8,8-hexamethyl-5,6,7,8- tetrahydronaphthalene-2-carboxylic acid (AHTN-COOH) with methanol. AHTN-COOH itself is the product of a haloform reaction from 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8- tetrahydronaphthalen-2-yl)ethan-1-one (AHTN) and sodium hypochlorite solution. Two slightly different syntheses of AHTN-COOH are described by Kuhlich et al. (2010) and by Valdersnes et al. (2006). The crystal structure of AHTN-COOH was described previously by Kuhlich et al. (2010). The crystal structure of AHTN was determined by De Ridder et al. (1990).

The title compound can either be obtained in a two-step synthesis, described by Valdersnes et al. (2006) or, as described here, in a one-step procedure (see Experimental).

AHTN itself is a widely used fragrance in cosmetics and cleaning products. It is introduced into the environment mainly via sewage treatment plants and can be found in surface water at low µg/L concentration (Heberer, 2003). It is in focus of interest due to its low estrogenic potential (Bitsch et al., 2002). Due to their structural similarities to AHTN, the title compound and AHTN-COOH might also have estrogenic or even toxic properties themselves.

The title compound was found in human breast milk and piscine fatty tissue by Valdersnes et al. (2006) proofing its ubiquitary occurrence.

The molecule crystallizes in the monoclinic space group P21/n. The molecular structure of the compound and the atom-labeling scheme are shown in Fig 1. The structure is disordered in the non aromatic ring. This disorder can be described as pseudo mirror-symmetric with respect to the aromatic ring's plane, resulting in two moieties (ratio 0.744 (3):0.256 (3)).

A general puckering analysis according to Cremer and Pople (Cremer & Pople, 1975) led to a half-chair conformation for both enantiomers. The S-enantiomer (C4-C5-C9-C10B-C11B-C12) has a puckering amplitude (Q) of 0.526 (6) Å and 0.502 (2) Å for the R-enantiomer (C4-C5-C9-C10-C11-C12), respectively. The maximum deviation from planarity for C11/C11B is -0.3587 (39) of the R-enantiomer and 0.3335 (14) of the S-enantiomer, respectively, proofing the nearly mirror-symmetric setup.

Each molecule is surrounded by three next neighbors, whereas the centroids of the molecules are arranged in sheets parallel to the (202) plane.

A detailed description of the disorder treatment can be found in the refinement section. The molecules form pairs via non classical hydrogen bonds (C18—H26···O2) (see dashed green bonds in Fig. 2).

Experimental

The methyl ester of 1-(3,5,5,6,8,8-hexamethyl-5,6,7,8- tetrahydronaphthalen-2-yl)ethan-1-one (AHTN) was synthesized by stirring a solution of 1 mg AHTN dissolved in 100 mL methanol and 50 mL 10% sodium hypochlorite solution at room temperature. After 24 h of stirring precipitated sodium chloride was dissolved with water and the organic compound was extracted three times with 50 mL ethyl acetate each. The organic solvents were combined, washed with water and dried with sodium sulfate. For single-crystal X-ray crystallography white and clear crystals of the title compound were grown by solvent evaporation (ethyl acetate) at ambient temperature over a period of three days [m.p. 348 K]. IR (ν, cm-1): 1720(s), 1687(s), 1609(s), 1550(s), 1495(s), 1435(s), 1390(s), 1360(s), 1298(s), 1255(s), 1245(s), 1191(s), 1141(s), 1103(s), 1021(s), 980(s), 944(s), 916(s); 1H-NMR (500 MHz, CD3OD, TMS): δ = 7.83 (1H, s), 7.23 (1H, s), 3.83 (3H, s), 2.48 (3H, s), 1.85 (1H, ddq, JH,H'=2.7 Hz, JH,H''=13.2 Hz, JH,Me=6.9 Hz), 1.61 (1H, dd, 2J=13.6 Hz, 3J=13.2 Hz), 1.38 (1H, dd, 2J=13.6 Hz, 3J=2.7 Hz), 1.30 (3H, s), 1.26 (3H, s), 1.22 (3H, s), 1.04 (3H, s), 0.98 (3H, d, J=6.9 Hz); 13C-NMR (125 MHz, CD3OD, TMS): δ = 169.7, 151.8, 143.5, 137.8, 131.8, 130.2, 127.8, 52.1, 44.6, 38.9, 35.7, 34.9, 32.6, 32.4, 28.9, 25.1, 21.7, 17.1; (+)-ESI/MS: 275.6 (60) [M+H+], 297.5 (100) [M+Na+].

Refinement

The structure exhibits disorder originating from two possible half chair conformations in the non aromatic ring. The significant disorder around the atoms of the non aromatic ring was taken into account and the refinement was improved by introducing split positions for the atoms C10, C11, C13, C14, C15, C16 and C17. Equivalent bond distances within the two moieties were restrained to be the same within a standard deviation of 0.02Å, and equivalent disordered atoms were constrained to have identical ADPs. Refinement of the occupancy ratio converged to a value of 74.4 (3)% for the major and 25.6 (3)% for the minor moiety, respectively.

Hydrogen atoms were placed in calculated positions with C—H distances of 0.98 (CH3), 0.99 (CH2), 1.00 (CHsat), and 0.95 (CHarom) with Uiso(H) = 1.2 of the parent atom Ueq or 1.5 Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

: Left: ORTEP representation of the title compound with atomic labeling shown with 30% probability displacement ellipsoids. Right: Atoms belonging to the minor disordered moiety and their bonds are presented in light gray and as thin black lines respectively. Hydrogen atoms are omitted for the sake of clarity.

Fig. 2.

Fig. 2.

: View of the unit cell of the title compound along [010]. Hydrogen bonds are drawn as dashed green lines. The minor disordered moiety is omitted for clarity.

Crystal data

C18H26O2 F(000) = 600
Mr = 274.39 Dx = 1.122 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 11.5049 (11) Å θ = 65–69°
b = 11.9482 (5) Å µ = 0.55 mm1
c = 12.1078 (13) Å T = 193 K
β = 102.612 (5)° Block, colourless
V = 1624.2 (2) Å3 0.45 × 0.40 × 0.30 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.047
Radiation source: rotating anode θmax = 69.8°, θmin = 4.8°
graphite h = 0→14
ω/2θ scans k = −14→14
5083 measured reflections l = −14→14
3062 independent reflections 3 standard reflections every 60 min
2856 reflections with I > 2σ(I) intensity decay: 3%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0889P)2 + 0.4305P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3062 reflections Δρmax = 0.29 e Å3
216 parameters Δρmin = −0.26 e Å3
10 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0070 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.34558 (10) 1.32637 (9) −0.02324 (9) 0.0454 (3)
O2 0.44327 (15) 1.40647 (10) 0.13483 (11) 0.0711 (5)
C1 0.40482 (12) 1.32335 (11) 0.08442 (12) 0.0353 (3)
C2 0.41364 (11) 1.20805 (11) 0.13210 (10) 0.0283 (3)
C3 0.34903 (11) 1.12216 (11) 0.06975 (10) 0.0284 (3)
H23 0.2999 1.1396 −0.0020 0.034*
C4 0.35277 (10) 1.01170 (11) 0.10740 (10) 0.0267 (3)
C5 0.42442 (11) 0.98674 (11) 0.21369 (10) 0.0280 (3)
C6 0.48890 (11) 1.07419 (11) 0.27540 (10) 0.0310 (3)
H4 0.5373 1.0571 0.3476 0.037*
C7 0.48699 (11) 1.18407 (11) 0.23842 (10) 0.0297 (3)
C8 0.56520 (13) 1.26927 (13) 0.31130 (12) 0.0412 (4)
H1 0.6091 1.2331 0.3806 0.062*
H2 0.5156 1.3295 0.3310 0.062*
H3 0.6217 1.3005 0.2696 0.062*
C9 0.43809 (13) 0.86813 (12) 0.26390 (11) 0.0358 (4)
C10 0.33564 (19) 0.79143 (16) 0.19751 (16) 0.0364 (5) 0.744 (3)
H16 0.2599 0.8165 0.2176 0.044* 0.744 (3)
C11 0.32069 (18) 0.80706 (15) 0.07020 (16) 0.0352 (4) 0.744 (3)
H11 0.3979 0.7929 0.0493 0.042* 0.744 (3)
H12 0.2627 0.7515 0.0302 0.042* 0.744 (3)
C15 0.3518 (4) 0.6672 (3) 0.2281 (5) 0.0516 (9) 0.744 (3)
H13 0.2785 0.6265 0.1949 0.077* 0.744 (3)
H14 0.3692 0.6587 0.3106 0.077* 0.744 (3)
H15 0.4180 0.6368 0.1984 0.077* 0.744 (3)
C10B 0.3875 (6) 0.7792 (5) 0.1773 (5) 0.0364 (5) 0.256 (3)
H16B 0.4408 0.7776 0.1222 0.044* 0.256 (3)
C11B 0.2689 (5) 0.8159 (4) 0.1118 (5) 0.0352 (4) 0.256 (3)
H11B 0.2177 0.8350 0.1651 0.042* 0.256 (3)
H12B 0.2307 0.7532 0.0638 0.042* 0.256 (3)
C15B 0.3853 (14) 0.6606 (11) 0.2212 (16) 0.0516 (9) 0.256 (3)
H13B 0.4661 0.6383 0.2595 0.077* 0.256 (3)
H14B 0.3559 0.6098 0.1577 0.077* 0.256 (3)
H15B 0.3327 0.6569 0.2747 0.077* 0.256 (3)
C12 0.27785 (11) 0.92416 (11) 0.03173 (11) 0.0318 (3)
C13 0.1469 (4) 0.9422 (4) 0.0305 (4) 0.0414 (9) 0.744 (3)
H5 0.0990 0.8866 −0.0190 0.062* 0.744 (3)
H6 0.1232 1.0176 0.0023 0.062* 0.744 (3)
H7 0.1339 0.9342 0.1075 0.062* 0.744 (3)
C14 0.2948 (2) 0.93749 (19) −0.09371 (18) 0.0374 (5) 0.744 (3)
H8 0.3800 0.9388 −0.0936 0.056* 0.744 (3)
H9 0.2580 1.0076 −0.1258 0.056* 0.744 (3)
H10 0.2570 0.8744 −0.1395 0.056* 0.744 (3)
C16 0.4257 (4) 0.8693 (6) 0.3874 (3) 0.0576 (11) 0.744 (3)
H17 0.4953 0.9059 0.4345 0.086* 0.744 (3)
H18 0.4202 0.7922 0.4135 0.086* 0.744 (3)
H19 0.3535 0.9104 0.3930 0.086* 0.744 (3)
C17 0.5617 (2) 0.8238 (2) 0.2576 (2) 0.0464 (6) 0.744 (3)
H20 0.5676 0.8189 0.1782 0.070* 0.744 (3)
H21 0.5734 0.7494 0.2923 0.070* 0.744 (3)
H22 0.6230 0.8749 0.2982 0.070* 0.744 (3)
C13B 0.1450 (11) 0.9619 (14) 0.0068 (14) 0.0414 (9) 0.256 (3)
H5B 0.0939 0.8991 −0.0254 0.062* 0.256 (3)
H6B 0.1334 1.0242 −0.0473 0.062* 0.256 (3)
H7B 0.1241 0.9862 0.0773 0.062* 0.256 (3)
C14B 0.3189 (7) 0.8985 (6) −0.0673 (6) 0.0374 (5) 0.256 (3)
H8B 0.3208 0.9670 −0.1115 0.056* 0.256 (3)
H9B 0.2652 0.8441 −0.1128 0.056* 0.256 (3)
H10B 0.3993 0.8668 −0.0462 0.056* 0.256 (3)
C16B 0.3894 (15) 0.876 (2) 0.3749 (13) 0.0576 (11) 0.256 (3)
H17B 0.4310 0.9355 0.4231 0.086* 0.256 (3)
H18B 0.4029 0.8042 0.4155 0.086* 0.256 (3)
H19B 0.3038 0.8918 0.3554 0.086* 0.256 (3)
C17B 0.5738 (8) 0.8426 (8) 0.3014 (7) 0.0464 (6) 0.256 (3)
H20B 0.6116 0.8534 0.2371 0.070* 0.256 (3)
H21B 0.5851 0.7651 0.3279 0.070* 0.256 (3)
H22B 0.6101 0.8934 0.3629 0.070* 0.256 (3)
C18 0.33250 (17) 1.43507 (14) −0.07628 (16) 0.0561 (5)
H24 0.2983 1.4873 −0.0297 0.084*
H25 0.2796 1.4293 −0.1514 0.084*
H26 0.4107 1.4624 −0.0838 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0551 (7) 0.0345 (6) 0.0423 (6) −0.0050 (5) 0.0009 (5) 0.0096 (4)
O2 0.1106 (12) 0.0323 (6) 0.0585 (8) −0.0166 (7) −0.0076 (7) 0.0010 (5)
C1 0.0362 (7) 0.0302 (7) 0.0399 (7) −0.0030 (5) 0.0091 (6) 0.0000 (5)
C2 0.0269 (6) 0.0288 (7) 0.0313 (6) 0.0003 (5) 0.0108 (5) −0.0009 (5)
C3 0.0272 (6) 0.0312 (7) 0.0270 (6) 0.0007 (5) 0.0066 (5) −0.0006 (5)
C4 0.0252 (6) 0.0293 (7) 0.0275 (6) 0.0000 (5) 0.0101 (5) −0.0018 (5)
C5 0.0292 (6) 0.0312 (7) 0.0268 (6) 0.0023 (5) 0.0130 (5) 0.0012 (5)
C6 0.0320 (7) 0.0372 (7) 0.0243 (6) 0.0022 (5) 0.0072 (5) −0.0009 (5)
C7 0.0277 (6) 0.0342 (7) 0.0289 (6) −0.0004 (5) 0.0101 (5) −0.0066 (5)
C8 0.0415 (8) 0.0406 (8) 0.0388 (7) −0.0035 (6) 0.0031 (6) −0.0098 (6)
C9 0.0452 (8) 0.0337 (7) 0.0306 (7) 0.0020 (6) 0.0132 (5) 0.0062 (5)
C10 0.0429 (12) 0.0309 (9) 0.0411 (10) −0.0002 (9) 0.0216 (8) 0.0049 (7)
C11 0.0417 (10) 0.0276 (9) 0.0390 (10) −0.0032 (7) 0.0149 (7) −0.0046 (7)
C15 0.066 (3) 0.0331 (10) 0.0607 (13) −0.0013 (14) 0.0255 (19) 0.0079 (8)
C10B 0.0429 (12) 0.0309 (9) 0.0411 (10) −0.0002 (9) 0.0216 (8) 0.0049 (7)
C11B 0.0417 (10) 0.0276 (9) 0.0390 (10) −0.0032 (7) 0.0149 (7) −0.0046 (7)
C15B 0.066 (3) 0.0331 (10) 0.0607 (13) −0.0013 (14) 0.0255 (19) 0.0079 (8)
C12 0.0322 (7) 0.0292 (7) 0.0340 (7) −0.0025 (5) 0.0073 (5) −0.0034 (5)
C13 0.0314 (8) 0.043 (2) 0.052 (2) −0.0091 (10) 0.0133 (11) −0.0071 (14)
C14 0.0466 (13) 0.0345 (13) 0.0325 (11) −0.0042 (9) 0.0117 (9) −0.0053 (8)
C16 0.091 (3) 0.0511 (14) 0.0374 (14) 0.006 (3) 0.029 (2) 0.0144 (12)
C17 0.0529 (12) 0.0383 (13) 0.0484 (16) 0.0109 (9) 0.0119 (13) 0.0057 (12)
C13B 0.0314 (8) 0.043 (2) 0.052 (2) −0.0091 (10) 0.0133 (11) −0.0071 (14)
C14B 0.0466 (13) 0.0345 (13) 0.0325 (11) −0.0042 (9) 0.0117 (9) −0.0053 (8)
C16B 0.091 (3) 0.0511 (14) 0.0374 (14) 0.006 (3) 0.029 (2) 0.0144 (12)
C17B 0.0529 (12) 0.0383 (13) 0.0484 (16) 0.0109 (9) 0.0119 (13) 0.0057 (12)
C18 0.0646 (11) 0.0412 (9) 0.0583 (10) −0.0050 (8) 0.0038 (8) 0.0200 (7)

Geometric parameters (Å, °)

O1—C1 1.3330 (17) C11B—H11B 0.9900
O1—C18 1.4422 (18) C11B—H12B 0.9900
O2—C1 1.1986 (18) C15B—H13B 0.9800
C1—C2 1.4886 (18) C15B—H14B 0.9800
C2—C3 1.3895 (18) C15B—H15B 0.9800
C2—C7 1.4060 (18) C12—C14B 1.415 (7)
C3—C4 1.3939 (18) C12—C13 1.519 (4)
C3—H23 0.9500 C12—C13B 1.559 (12)
C4—C5 1.4005 (18) C12—C14 1.581 (2)
C4—C12 1.5270 (17) C13—H5 0.9800
C5—C6 1.3994 (18) C13—H6 0.9800
C5—C9 1.5365 (18) C13—H7 0.9800
C6—C7 1.3858 (19) C14—H8 0.9800
C6—H4 0.9500 C14—H9 0.9800
C7—C8 1.5092 (18) C14—H10 0.9800
C8—H1 0.9800 C16—H17 0.9800
C8—H2 0.9800 C16—H18 0.9800
C8—H3 0.9800 C16—H19 0.9800
C9—C10B 1.517 (6) C17—H20 0.9800
C9—C16 1.532 (4) C17—H21 0.9800
C9—C17 1.535 (3) C17—H22 0.9800
C9—C17B 1.558 (9) C13B—H5B 0.9800
C9—C16B 1.567 (12) C13B—H6B 0.9800
C9—C10 1.569 (2) C13B—H7B 0.9800
C10—C11 1.525 (3) C14B—H8B 0.9800
C10—C15 1.531 (4) C14B—H9B 0.9800
C10—H16 1.0000 C14B—H10B 0.9800
C11—C12 1.522 (2) C16B—H17B 0.9800
C11—H11 0.9900 C16B—H18B 0.9800
C11—H12 0.9900 C16B—H19B 0.9800
C15—H13 0.9800 C17B—H20B 0.9800
C15—H14 0.9800 C17B—H21B 0.9800
C15—H15 0.9800 C17B—H22B 0.9800
C10B—C11B 1.487 (8) C18—H24 0.9800
C10B—C15B 1.515 (13) C18—H25 0.9800
C10B—H16B 1.0000 C18—H26 0.9800
C11B—C12 1.633 (5)
C1—O1—C18 116.18 (12) C12—C11B—H12B 109.1
O2—C1—O1 121.91 (13) H11B—C11B—H12B 107.9
O2—C1—C2 125.66 (13) C10B—C15B—H13B 109.5
O1—C1—C2 112.42 (11) C10B—C15B—H14B 109.5
C3—C2—C7 119.33 (12) H13B—C15B—H14B 109.5
C3—C2—C1 119.32 (11) C10B—C15B—H15B 109.5
C7—C2—C1 121.35 (12) H13B—C15B—H15B 109.5
C2—C3—C4 123.16 (11) H14B—C15B—H15B 109.5
C2—C3—H23 118.4 C14B—C12—C13 122.5 (4)
C4—C3—H23 118.4 C14B—C12—C11 85.1 (3)
C3—C4—C5 118.17 (11) C13—C12—C11 112.82 (19)
C3—C4—C12 118.64 (11) C14B—C12—C4 114.0 (3)
C5—C4—C12 123.19 (12) C13—C12—C4 109.7 (2)
C6—C5—C4 117.95 (12) C11—C12—C4 110.08 (12)
C6—C5—C9 118.74 (11) C14B—C12—C13B 113.2 (7)
C4—C5—C9 123.29 (12) C4—C12—C13B 108.6 (7)
C7—C6—C5 124.45 (11) C13—C12—C14 107.86 (18)
C7—C6—H4 117.8 C11—C12—C14 106.67 (13)
C5—C6—H4 117.8 C4—C12—C14 109.60 (12)
C6—C7—C2 116.93 (11) C13B—C12—C14 96.1 (6)
C6—C7—C8 119.00 (12) C14B—C12—C11B 114.1 (4)
C2—C7—C8 124.04 (12) C13—C12—C11B 85.8 (2)
C7—C8—H1 109.5 C4—C12—C11B 106.7 (2)
C7—C8—H2 109.5 C13B—C12—C11B 99.1 (6)
H1—C8—H2 109.5 C14—C12—C11B 133.4 (2)
C7—C8—H3 109.5 C12—C13—H5 109.5
H1—C8—H3 109.5 C12—C13—H6 109.5
H2—C8—H3 109.5 C12—C13—H7 109.5
C10B—C9—C16 125.2 (4) C12—C14—H8 109.5
C10B—C9—C17 86.8 (3) C12—C14—H9 109.5
C16—C9—C17 109.67 (19) C12—C14—H10 109.5
C10B—C9—C5 112.5 (2) C9—C16—H17 109.5
C16—C9—C5 110.8 (3) C9—C16—H18 109.5
C17—C9—C5 108.32 (14) C9—C16—H19 109.5
C10B—C9—C17B 105.9 (4) C9—C17—H20 109.5
C16—C9—C17B 91.1 (4) C9—C17—H21 109.5
C5—C9—C17B 107.8 (4) C9—C17—H22 109.5
C10B—C9—C16B 118.5 (10) C12—C13B—H5B 109.5
C17—C9—C16B 124.8 (6) C12—C13B—H6B 109.5
C5—C9—C16B 105.2 (9) H5B—C13B—H6B 109.5
C17B—C9—C16B 106.5 (7) C12—C13B—H7B 109.5
C17—C9—C10 111.94 (15) H5B—C13B—H7B 109.5
C5—C9—C10 109.60 (12) H6B—C13B—H7B 109.5
C17B—C9—C10 128.9 (4) C12—C14B—H8B 109.5
C16B—C9—C10 95.9 (9) C12—C14B—H9B 109.5
C11—C10—C15 110.1 (2) H8B—C14B—H9B 109.5
C11—C10—C9 110.65 (14) C12—C14B—H10B 109.5
C15—C10—C9 113.8 (2) H8B—C14B—H10B 109.5
C11—C10—H16 107.3 H9B—C14B—H10B 109.5
C15—C10—H16 107.3 C9—C16B—H17B 109.5
C9—C10—H16 107.3 C9—C16B—H18B 109.5
C12—C11—C10 112.30 (14) H17B—C16B—H18B 109.5
C12—C11—H11 109.1 C9—C16B—H19B 109.5
C10—C11—H11 109.1 H17B—C16B—H19B 109.5
C12—C11—H12 109.1 H18B—C16B—H19B 109.5
C10—C11—H12 109.1 C9—C17B—H20B 109.5
H11—C11—H12 107.9 C9—C17B—H21B 109.5
C11B—C10B—C15B 112.3 (8) H20B—C17B—H21B 109.5
C11B—C10B—C9 109.3 (4) C9—C17B—H22B 109.5
C15B—C10B—C9 116.5 (9) H20B—C17B—H22B 109.5
C11B—C10B—H16B 106.0 H21B—C17B—H22B 109.5
C15B—C10B—H16B 106.0 O1—C18—H24 109.5
C9—C10B—H16B 106.0 O1—C18—H25 109.5
C10B—C11B—C12 112.4 (4) H24—C18—H25 109.5
C10B—C11B—H11B 109.1 O1—C18—H26 109.5
C12—C11B—H11B 109.1 H24—C18—H26 109.5
C10B—C11B—H12B 109.1 H25—C18—H26 109.5
C18—O1—C1—O2 1.2 (2) C17B—C9—C10—C15 36.1 (5)
C18—O1—C1—C2 179.86 (13) C16B—C9—C10—C15 −80.7 (8)
O2—C1—C2—C3 169.86 (15) C15—C10—C11—C12 167.6 (2)
O1—C1—C2—C3 −8.72 (18) C9—C10—C11—C12 −65.6 (2)
O2—C1—C2—C7 −10.8 (2) C16—C9—C10B—C11B 94.2 (5)
O1—C1—C2—C7 170.60 (11) C17—C9—C10B—C11B −153.9 (4)
C7—C2—C3—C4 0.10 (18) C5—C9—C10B—C11B −45.4 (5)
C1—C2—C3—C4 179.43 (11) C17B—C9—C10B—C11B −162.8 (5)
C2—C3—C4—C5 0.59 (18) C16B—C9—C10B—C11B 77.8 (9)
C2—C3—C4—C12 179.94 (11) C10—C9—C10B—C11B 43.7 (4)
C3—C4—C5—C6 −0.56 (17) C16—C9—C10B—C15B −34.4 (8)
C12—C4—C5—C6 −179.88 (11) C17—C9—C10B—C15B 77.5 (7)
C3—C4—C5—C9 −178.83 (11) C5—C9—C10B—C15B −174.0 (6)
C12—C4—C5—C9 1.85 (18) C17B—C9—C10B—C15B 68.5 (8)
C4—C5—C6—C7 −0.15 (19) C16B—C9—C10B—C15B −50.9 (10)
C9—C5—C6—C7 178.20 (11) C10—C9—C10B—C15B −85.0 (8)
C5—C6—C7—C2 0.83 (19) C15B—C10B—C11B—C12 −161.7 (8)
C5—C6—C7—C8 −177.28 (12) C9—C10B—C11B—C12 67.4 (5)
C3—C2—C7—C6 −0.78 (17) C10—C11—C12—C14B 162.2 (4)
C1—C2—C7—C6 179.90 (11) C10—C11—C12—C13 −74.5 (3)
C3—C2—C7—C8 177.23 (12) C10—C11—C12—C4 48.37 (18)
C1—C2—C7—C8 −2.10 (19) C10—C11—C12—C13B −83.0 (8)
C6—C5—C9—C10B −166.3 (3) C10—C11—C12—C14 167.20 (16)
C4—C5—C9—C10B 12.0 (3) C10—C11—C12—C11B −41.0 (4)
C6—C5—C9—C16 48.2 (2) C3—C4—C12—C14B 69.9 (3)
C4—C5—C9—C16 −133.5 (2) C5—C4—C12—C14B −110.8 (3)
C6—C5—C9—C17 −72.09 (16) C3—C4—C12—C13 −71.72 (18)
C4—C5—C9—C17 106.17 (16) C5—C4—C12—C13 107.60 (17)
C6—C5—C9—C17B −50.0 (3) C3—C4—C12—C11 163.56 (12)
C4—C5—C9—C17B 128.3 (3) C5—C4—C12—C11 −17.12 (17)
C6—C5—C9—C16B 63.4 (8) C3—C4—C12—C13B −57.3 (6)
C4—C5—C9—C16B −118.4 (8) C5—C4—C12—C13B 122.0 (6)
C6—C5—C9—C10 165.52 (12) C3—C4—C12—C14 46.53 (17)
C4—C5—C9—C10 −16.23 (17) C5—C4—C12—C14 −134.15 (14)
C16—C9—C10—C11 166.1 (2) C3—C4—C12—C11B −163.2 (2)
C17—C9—C10—C11 −74.04 (19) C5—C4—C12—C11B 16.1 (3)
C5—C9—C10—C11 46.17 (18) C10B—C11B—C12—C14B 75.9 (6)
C17B—C9—C10—C11 −88.6 (5) C10B—C11B—C12—C13 −160.2 (5)
C16B—C9—C10—C11 154.6 (7) C10B—C11B—C12—C11 50.5 (4)
C16—C9—C10—C15 −69.3 (3) C10B—C11B—C12—C4 −50.9 (5)
C17—C9—C10—C15 50.6 (2) C10B—C11B—C12—C13B −163.5 (8)
C5—C9—C10—C15 170.84 (18) C10B—C11B—C12—C14 89.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H23···O1 0.95 2.32 2.6839 (17) 103
C18—H26···O2i 0.98 2.47 3.397 (2) 157

Symmetry codes: (i) −x+1, −y+3, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2346).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bitsch, N., Dudas, C., Korner, W., Failing, K., Biselli, S., Rimkus, G. & Brunn, H. (2002). Arch. Environ. Contam. Toxicol. 43, 257–264. [DOI] [PubMed]
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. De Ridder, D. J. A., Goubitz, K. & Schenk, H. (1990). Acta Cryst. C46, 2200–2202.
  5. Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.
  6. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  7. Heberer, T. (2003). Acta Hydrochim. Hydrobiol. 30, 227–243.
  8. Kuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Valdersnes, S., Kallenborn, R. & Sydnes, L. K. (2006). Int. J. Environ. Anal. Chem. 86, 461–471.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002601/zl2346sup1.cif

e-67-0o485-sup1.cif (25.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002601/zl2346Isup2.hkl

e-67-0o485-Isup2.hkl (150.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES