Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):o392. doi: 10.1107/S160053681100095X

5-[(2-Chloro-4-nitro­anilino)methyl­idene]-2,2-dimethyl-1,3-dioxane-4,6-dione

Xian-Qiu Lan a, Xiao-Feng Zhang a, Ying-Hong Yang a, You-Fu Luo a,b,*
PMCID: PMC3051652  PMID: 21523065

Abstract

In the title compound, C13H11ClN2O6, the dihedral angles between the benzene ring and the amino­methyl­ene unit and between the amino­methyl­ene group and the dioxane ring are 8.19 (14) and 1.39 (17)°, respectively. The dioxane ring has a half-boat conformation, in which the C atom between the dioxane O atoms is 0.662 (4)Å out of the plane through the remaining ring atoms. Intra­molecular N—H⋯O and N—H⋯Cl inter­actions occur.

Related literature

For the synthesis of related compounds, see: Cassis et al. (1985). For the biological activity of related compounds, see: Griera et al. (1997); Darque et al. (2009).graphic file with name e-67-0o392-scheme1.jpg

Experimental

Crystal data

  • C13H11ClN2O6

  • M r = 326.69

  • Monoclinic, Inline graphic

  • a = 13.5850 (5) Å

  • b = 5.04379 (14) Å

  • c = 21.0272 (7) Å

  • β = 104.427 (4)°

  • V = 1395.35 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.40 × 0.40 × 0.30 mm

Data collection

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.984, T max = 1.0

  • 6136 measured reflections

  • 2853 independent reflections

  • 2141 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.104

  • S = 1.04

  • 2853 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO ; data reduction: CrysAlis PRO ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100095X/bq2269sup1.cif

e-67-0o392-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100095X/bq2269Isup2.hkl

e-67-0o392-Isup2.hkl (140.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1 0.86 2.46 2.9328 (15) 115
N2—H2⋯O3 0.86 1.99 2.670 (2) 136

Acknowledgments

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

supplementary crystallographic information

Comment

The 4(1H)quinolone are of great importance owing to their wide biological properties (Griera et al., 1997; Darque et al.,2009). 5-{[(2-Chloro-4-nitrophenyl)amino]methylene}-2,2-dimethyl-1,3-dioxane- 4,6-dione is one of the key intermediates in our synthetic investigations of new 4(1H)quinolone derivatives. We report here its crystal structure. The title compound is approximately planar, the dihedral angles between the benzene ring and the aminomethylene unit and between the aminomethylene group and the dioxane ring are 8.19 (14)° and 1.39 (17)°, respectively. The dioxane ring has a half-boat conformation, in which the C atom between the dioxane O atoms is 0.6615 (35) Å out of the plane (Figure 1.). In the molecule, there are intramolecular N—H···O and N—H···Cl interactions (Table 1.).

Experimental

An ethanol solution (50 ml) of 2,2–dimethyl–1,3–dioxane–4,6–dione (1.44 g, 10 mmol) and triethoxymethane (1.78 g, 12 mmol) was heated to reflux for 2.5 h, then the 2-chloro-4-nitroaniline(1.72 g, 10 mmol) was added into the solution. The mixture was heated under reflux for another 8 h and then filtered. The precipitate was recrystallized from ethanol, giving the title compound. Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of ethanol.

Refinement

The H-atom of N was located in a difference Fourier map and free refined: N—H = 0.86 Å. The other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic,C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. The intramolecular hydrogen bonds are shown as a dashed lines.

Crystal data

C13H11ClN2O6 F(000) = 672
Mr = 326.69 Dx = 1.555 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybc Cell parameters from 2432 reflections
a = 13.5850 (5) Å θ = 3.0–29.2°
b = 5.04379 (14) Å µ = 0.31 mm1
c = 21.0272 (7) Å T = 293 K
β = 104.427 (4)° Block, colorless
V = 1395.35 (8) Å3 0.40 × 0.40 × 0.30 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 2853 independent reflections
Radiation source: fine-focus sealed tube 2141 reflections with I > 2σ(I)
graphite Rint = 0.021
Detector resolution: 16.0874 pixels mm-1 θmax = 26.4°, θmin = 3.1°
ω scans h = −16→16
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −6→6
Tmin = 0.984, Tmax = 1.0 l = −25→26
6136 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.1291P] where P = (Fo2 + 2Fc2)/3
2853 reflections (Δ/σ)max < 0.001
201 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.11303 (4) 0.78022 (10) 0.26632 (2) 0.05062 (18)
O1 −0.23464 (10) 0.7514 (2) 0.04172 (7) 0.0446 (4)
O2 −0.24014 (10) 0.4073 (3) −0.03503 (6) 0.0469 (4)
O3 −0.09905 (11) 0.8273 (3) 0.12205 (7) 0.0517 (4)
O4 −0.10943 (10) 0.1444 (3) −0.03156 (7) 0.0509 (4)
O5 0.46457 (14) 0.3369 (4) 0.35706 (9) 0.0855 (6)
O6 0.48067 (14) 0.0203 (4) 0.29216 (9) 0.0910 (6)
N1 0.43369 (14) 0.2060 (4) 0.30716 (10) 0.0592 (5)
N2 0.05320 (11) 0.4776 (3) 0.14363 (7) 0.0360 (4)
H2 0.0263 0.6155 0.1565 0.043*
C1 0.33473 (15) 0.2739 (4) 0.26352 (9) 0.0432 (5)
C2 0.27826 (15) 0.4698 (4) 0.28308 (9) 0.0431 (5)
H2A 0.3024 0.5569 0.3229 0.052*
C3 0.18530 (14) 0.5341 (3) 0.24251 (9) 0.0377 (4)
C4 0.14835 (13) 0.4042 (3) 0.18250 (8) 0.0337 (4)
C5 0.20803 (15) 0.2071 (4) 0.16447 (9) 0.0421 (5)
H5 0.1847 0.1193 0.1247 0.051*
C6 0.30095 (15) 0.1410 (4) 0.20485 (10) 0.0455 (5)
H6 0.3404 0.0086 0.1928 0.055*
C7 −0.00122 (13) 0.3622 (3) 0.08932 (8) 0.0336 (4)
H7 0.0254 0.2132 0.0736 0.040*
C8 −0.09479 (13) 0.4525 (3) 0.05552 (8) 0.0328 (4)
C9 −0.14016 (14) 0.6847 (3) 0.07640 (9) 0.0373 (4)
C10 −0.29653 (14) 0.5492 (4) 0.00333 (10) 0.0437 (5)
C11 −0.14546 (14) 0.3172 (4) −0.00500 (9) 0.0359 (4)
C12 −0.33222 (18) 0.3613 (4) 0.04848 (13) 0.0656 (7)
H12B −0.3779 0.2337 0.0229 0.098*
H12C −0.3668 0.4590 0.0756 0.098*
H12A −0.2748 0.2713 0.0758 0.098*
C13 −0.38047 (18) 0.6932 (5) −0.04496 (12) 0.0695 (7)
H13B −0.3514 0.8249 −0.0678 0.104*
H13C −0.4245 0.7774 −0.0218 0.104*
H13A −0.4188 0.5687 −0.0760 0.104*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0589 (4) 0.0482 (3) 0.0464 (3) 0.0072 (2) 0.0162 (3) −0.0079 (2)
O1 0.0400 (8) 0.0317 (6) 0.0572 (9) 0.0054 (6) 0.0025 (7) −0.0053 (6)
O2 0.0393 (8) 0.0582 (8) 0.0405 (8) 0.0068 (6) 0.0048 (6) −0.0090 (7)
O3 0.0527 (9) 0.0407 (7) 0.0556 (9) 0.0058 (6) 0.0018 (7) −0.0167 (7)
O4 0.0477 (9) 0.0585 (9) 0.0464 (8) 0.0064 (7) 0.0118 (7) −0.0192 (7)
O5 0.0679 (12) 0.1027 (14) 0.0660 (11) 0.0073 (10) −0.0210 (10) −0.0129 (11)
O6 0.0689 (12) 0.1144 (15) 0.0783 (13) 0.0444 (12) −0.0031 (10) 0.0001 (11)
N1 0.0447 (11) 0.0748 (13) 0.0522 (12) 0.0057 (10) 0.0013 (9) 0.0098 (10)
N2 0.0349 (8) 0.0370 (8) 0.0364 (9) 0.0019 (7) 0.0092 (7) −0.0035 (7)
C1 0.0369 (11) 0.0526 (12) 0.0382 (11) 0.0015 (9) 0.0060 (9) 0.0074 (9)
C2 0.0462 (12) 0.0481 (11) 0.0327 (10) −0.0039 (9) 0.0051 (9) −0.0018 (9)
C3 0.0409 (11) 0.0385 (10) 0.0358 (10) −0.0014 (8) 0.0136 (9) 0.0005 (8)
C4 0.0317 (10) 0.0373 (9) 0.0333 (10) −0.0022 (7) 0.0107 (8) 0.0030 (8)
C5 0.0404 (11) 0.0500 (11) 0.0357 (11) 0.0028 (9) 0.0090 (9) −0.0051 (9)
C6 0.0412 (11) 0.0497 (11) 0.0467 (12) 0.0067 (9) 0.0128 (9) −0.0008 (10)
C7 0.0340 (10) 0.0351 (9) 0.0340 (10) −0.0001 (8) 0.0130 (8) −0.0005 (8)
C8 0.0342 (10) 0.0314 (9) 0.0344 (10) −0.0008 (7) 0.0115 (8) −0.0017 (8)
C9 0.0388 (10) 0.0308 (9) 0.0416 (11) −0.0010 (8) 0.0086 (9) 0.0004 (8)
C10 0.0365 (10) 0.0413 (10) 0.0529 (12) 0.0015 (8) 0.0099 (9) −0.0124 (9)
C11 0.0339 (10) 0.0400 (10) 0.0356 (10) −0.0012 (8) 0.0120 (8) −0.0014 (9)
C12 0.0596 (15) 0.0528 (13) 0.0971 (19) −0.0072 (11) 0.0431 (14) −0.0094 (13)
C13 0.0470 (14) 0.0787 (17) 0.0703 (16) 0.0174 (12) −0.0089 (12) −0.0148 (13)

Geometric parameters (Å, °)

Cl1—C3 1.7321 (19) C3—C4 1.399 (2)
O1—C9 1.351 (2) C4—C5 1.394 (2)
O1—C10 1.436 (2) C5—H5 0.9300
O2—C10 1.434 (2) C5—C6 1.375 (3)
O2—C11 1.362 (2) C6—H6 0.9300
O3—C9 1.218 (2) C7—H7 0.9300
O4—C11 1.203 (2) C7—C8 1.371 (2)
O5—N1 1.222 (2) C8—C9 1.442 (2)
O6—N1 1.218 (2) C8—C11 1.457 (2)
N1—C1 1.467 (3) C10—C12 1.505 (3)
N2—H2 0.8600 C10—C13 1.511 (3)
N2—C4 1.396 (2) C12—H12B 0.9600
N2—C7 1.330 (2) C12—H12C 0.9600
C1—C2 1.375 (3) C12—H12A 0.9600
C1—C6 1.378 (3) C13—H13B 0.9600
C2—H2A 0.9300 C13—H13C 0.9600
C2—C3 1.375 (2) C13—H13A 0.9600
O1—C9—C8 117.28 (15) C5—C4—N2 123.12 (16)
O1—C10—C12 109.17 (17) C5—C4—C3 118.49 (16)
O1—C10—C13 105.94 (16) C5—C6—C1 118.96 (19)
O2—C10—O1 110.53 (15) C5—C6—H6 120.5
O2—C10—C12 109.99 (15) C6—C1—N1 119.67 (19)
O2—C10—C13 106.34 (17) C6—C5—C4 120.78 (17)
O2—C11—C8 115.76 (16) C6—C5—H5 119.6
O3—C9—O1 117.76 (16) C7—N2—H2 115.8
O3—C9—C8 124.94 (17) C7—N2—C4 128.46 (15)
O4—C11—O2 118.24 (17) C7—C8—C9 121.58 (16)
O4—C11—C8 125.91 (17) C7—C8—C11 118.19 (16)
O5—N1—C1 118.4 (2) C8—C7—H7 118.5
O6—N1—O5 123.2 (2) C9—O1—C10 118.10 (13)
O6—N1—C1 118.38 (19) C9—C8—C11 120.12 (16)
N2—C4—C3 118.39 (16) C10—C12—H12B 109.5
N2—C7—H7 118.5 C10—C12—H12C 109.5
N2—C7—C8 123.03 (16) C10—C12—H12A 109.5
C1—C2—H2A 120.7 C10—C13—H13B 109.5
C1—C2—C3 118.59 (17) C10—C13—H13C 109.5
C1—C6—H6 120.5 C10—C13—H13A 109.5
C2—C1—N1 118.25 (18) C11—O2—C10 118.74 (14)
C2—C1—C6 122.08 (18) C12—C10—C13 114.77 (19)
C2—C3—Cl1 119.27 (14) H12B—C12—H12C 109.5
C2—C3—C4 121.10 (17) H12B—C12—H12A 109.5
C3—C2—H2A 120.7 H12C—C12—H12A 109.5
C4—N2—H2 115.8 H13B—C13—H13C 109.5
C4—C3—Cl1 119.63 (14) H13B—C13—H13A 109.5
C4—C5—H5 119.6 H13C—C13—H13A 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···Cl1 0.86 2.46 2.9328 (15) 115
N2—H2···O3 0.86 1.99 2.670 (2) 136

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2269).

References

  1. Cassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125–133.
  2. Darque, A., Dumetre, A., Hutter, S., Casano, G., Robin, M., Pannecouque, C. & Azas, N. (2009). Bioorg. Med. Chem. Lett. 19, 5962–5964. [DOI] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Griera, R., Armengol, M., Reyes, A., Alvarez, M., Palomer, A., Cabre, F., Pascual, J., Garcia, M. L. & Mauleon, D. (1997). Eur. J. Med. Chem. 32, 547–570.
  5. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100095X/bq2269sup1.cif

e-67-0o392-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100095X/bq2269Isup2.hkl

e-67-0o392-Isup2.hkl (140.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES