Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 12;67(Pt 2):o333. doi: 10.1107/S1600536811000845

N,N′-Bis(2-chloro­benz­yl)-N′′-(dichloro­acet­yl)phospho­ric triamide

Mehrdad Pourayoubi a,*, Maryam Toghraee a, Vladimir Divjakovic b
PMCID: PMC3051657  PMID: 21523017

Abstract

In the title compound, C16H16Cl4N3O2P, the phosphoryl and carbonyl groups are anti to each other. The dihedral angle between the benzene rings is 33.59 (16)°. In the crystal, adjacent mol­ecules are linked via N—H⋯O=P and N—H⋯O=C hydrogen bonds, into an extended chain running parallel to the a axis.

Related literature

For biologically active organo­phospho­rus compounds, see: Ekstrom et al. (2006). For the anti­cancer activity of compounds with a C(O)NHP(O) skeleton, see: Gholivand et al. (2011). For related structures, see: Sabbaghi et al. (2010a,b ). graphic file with name e-67-0o333-scheme1.jpg

Experimental

Crystal data

  • C16H16Cl4N3O2P

  • M r = 455.09

  • Triclinic, Inline graphic

  • a = 9.901 (1) Å

  • b = 10.179 (1) Å

  • c = 12.013 (2) Å

  • α = 90.403 (5)°

  • β = 112.851 (6)°

  • γ = 114.084 (6)°

  • V = 998.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 295 K

  • 0.22 × 0.12 × 0.11 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire3 Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.978, T max = 1.000

  • 6193 measured reflections

  • 3510 independent reflections

  • 2786 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.156

  • S = 1.02

  • 3510 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811000845/fi2102sup1.cif

e-67-0o333-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000845/fi2102Isup2.hkl

e-67-0o333-Isup2.hkl (168.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 1.93 2.756 (4) 162
N3—H3⋯O2ii 0.86 2.24 3.024 (4) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

supplementary crystallographic information

Comment

Organophosphorus compounds are well-known as the biologically active substances (Ekstrom et al., 2006). Among them the anticancer activity of compounds having a C(O)NHP(O) skeleton has been studied (Gholivand et al., 2011). In the previous works, some phosphoric triamides such as P(O)[NHC(O)C6H4(4-NO2)][NHC6H11]2 (Sabbaghi et al., 2010a) and P(O)[NHC(O)C6H4(4-NO2)][N(CH3)(C6H11)]2 (Sabbaghi et al., 2010b) have been structurally investigated. We report here on the synthesis and crystal structure of P(O)[NHC(O)CHCl2][NHCH2(2-Cl—C6H4)]2. Single crystals of title compound were obtained from a solution of CH3OH and CH3CN after a slow evaporation at room temperature. The phosphoryl and carbonyl groups are anti to each other and the phosphorus atom is in a slightly distorted tetrahedral environment (Fig. 1). The bond angles are in the range of 103.08 (16)°-117.84 (17)° around the P atom. The P—N1 and P—N3 (1.616 (3) Å and 1.619 (3) Å) bond lengths are shorter than the P—N2 bond (1.682 (3) Å). The environment of nitrogen atoms is essentially planar. The P═O bond length of 1.471 (3) Å is standard for phosphoramidate compounds.

In the crystal structure, adjacent molecules are linked via N–H···O═P and N–H···O═C hydrogen bonds, into an extended chain parallel to the a axis.

Experimental

The reaction of phosphorus pentachloride (16.91 mmol) and CHCl2C(O)NH2 (16.91 mmol) in dry CCl4 at 358 K (3 h) and then the treatment of formic acid (16.91 mmol) at ice bath temperature leads to CHCl2C(O)NHP(O)Cl2.

To a solution of CHCl2C(O)NHP(O)Cl2 (1.04 mmol) in dry CHCl3, a solution of 2-chlorobenzylamine (4.16 mmol) in dry CHCl3 was added dropwise and stirred at 273 K. After 4 h, the solvent was evaporated at room temperature. The solid was washed with H2O. The product was obtained after recrystallization from a methanol/acetonitrile mixture (4:1) after a slow evaporation at room temperature. IR (KBr, cm-1): 3392 (NH), 3080 (NH), 2881, 1704 (C═O), 1465, 1203 (P═O), 1072, 887.

Refinement

All H atoms were placed at calculated positions and were refined riding on the respective carrier atoms.

Figures

Fig. 1.

Fig. 1.

An ORTEP style plot of title compound. Ellipsoids are given at 30% probability level.

Crystal data

C16H16Cl4N3O2P Z = 2
Mr = 455.09 F(000) = 464
Triclinic, P1 Dx = 1.513 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.901 (1) Å Cell parameters from 2802 reflections
b = 10.179 (1) Å θ = 3.5–29.0°
c = 12.013 (2) Å µ = 0.69 mm1
α = 90.403 (5)° T = 295 K
β = 112.851 (6)° Prism, colourless
γ = 114.084 (6)° 0.22 × 0.12 × 0.11 mm
V = 998.7 (2) Å3

Data collection

Oxford Diffraction Xcalibur Sapphire3 Gemini diffractometer 3510 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2786 reflections with I > 2σ(I)
graphite Rint = 0.018
Detector resolution: 16.3280 pixels mm-1 θmax = 25.0°, θmin = 3.5°
ω scans h = −11→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −11→12
Tmin = 0.978, Tmax = 1.000 l = −14→13
6193 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0618P)2 + 1.5174P] where P = (Fo2 + 2Fc2)/3
3510 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 0.96 e Å3
0 restraints Δρmin = −0.65 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P 0.84901 (11) 0.52095 (11) 0.59850 (8) 0.0398 (3)
Cl1 0.4017 (2) 0.3402 (3) 0.12756 (12) 0.1300 (8)
Cl2 0.5672 (2) 0.16627 (16) 0.23126 (18) 0.1108 (6)
Cl3 0.65788 (18) 0.91760 (16) 0.50769 (15) 0.0893 (5)
Cl4 0.77087 (18) 0.44836 (16) 1.03178 (11) 0.0804 (4)
O1 1.0238 (3) 0.5568 (3) 0.6484 (2) 0.0543 (7)
O2 0.5072 (3) 0.4115 (4) 0.3908 (3) 0.0670 (9)
N1 0.7379 (4) 0.4006 (4) 0.6531 (3) 0.0496 (8)
H1 0.6627 0.3184 0.6048 0.059*
N2 0.7656 (3) 0.4413 (3) 0.4495 (3) 0.0427 (7)
H2 0.8279 0.4239 0.4240 0.051*
N3 0.8251 (4) 0.6669 (3) 0.6149 (3) 0.0481 (8)
H3 0.7538 0.6631 0.6405 0.058*
C1 0.5775 (5) 0.3419 (5) 0.2368 (4) 0.0512 (10)
H1A 0.6696 0.4058 0.2197 0.061*
C2 0.6105 (4) 0.4020 (4) 0.3661 (3) 0.0423 (8)
C3 0.9204 (5) 0.8049 (5) 0.5877 (4) 0.0611 (11)
H3A 1.0292 0.8142 0.6081 0.073*
H3B 0.9319 0.8859 0.6395 0.073*
C4 0.8437 (5) 0.8158 (4) 0.4545 (4) 0.0524 (10)
C5 0.7214 (5) 0.8603 (4) 0.4084 (4) 0.0560 (10)
C6 0.6453 (6) 0.8610 (5) 0.2847 (5) 0.0741 (14)
H6 0.5635 0.8919 0.2570 0.089*
C7 0.6907 (8) 0.8161 (6) 0.2034 (5) 0.0846 (16)
H7 0.6393 0.8155 0.1199 0.102*
C8 0.8110 (8) 0.7727 (6) 0.2449 (5) 0.0837 (16)
H8 0.8424 0.7428 0.1897 0.100*
C9 0.8878 (6) 0.7724 (5) 0.3692 (5) 0.0678 (12)
H9 0.9705 0.7425 0.3960 0.081*
C10 0.7581 (5) 0.4233 (5) 0.7789 (4) 0.0513 (10)
H10A 0.6585 0.4211 0.7776 0.062*
H10B 0.8462 0.5203 0.8215 0.062*
C11 0.7950 (4) 0.3128 (4) 0.8509 (3) 0.0458 (9)
C12 0.8030 (5) 0.3159 (5) 0.9693 (4) 0.0571 (11)
C13 0.8391 (6) 0.2189 (6) 1.0401 (5) 0.0745 (14)
H13 0.8461 0.2247 1.1196 0.089*
C14 0.8644 (7) 0.1145 (7) 0.9923 (6) 0.0904 (17)
H14 0.8875 0.0476 1.0391 0.108*
C15 0.8562 (7) 0.1062 (6) 0.8740 (6) 0.0893 (17)
H15 0.8733 0.0343 0.8414 0.107*
C16 0.8225 (6) 0.2060 (5) 0.8060 (5) 0.0657 (12)
H16 0.8182 0.2013 0.7273 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P 0.0347 (5) 0.0643 (6) 0.0311 (5) 0.0268 (5) 0.0192 (4) 0.0135 (4)
Cl1 0.1450 (15) 0.226 (2) 0.0426 (7) 0.1471 (16) −0.0041 (8) −0.0079 (9)
Cl2 0.1193 (13) 0.0728 (9) 0.1247 (14) 0.0485 (9) 0.0318 (11) −0.0113 (9)
Cl3 0.0902 (10) 0.0832 (9) 0.1143 (12) 0.0446 (8) 0.0567 (9) 0.0103 (8)
Cl4 0.1089 (10) 0.1091 (10) 0.0488 (7) 0.0593 (9) 0.0469 (7) 0.0242 (6)
O1 0.0390 (14) 0.097 (2) 0.0371 (14) 0.0384 (15) 0.0170 (12) 0.0138 (14)
O2 0.0404 (15) 0.119 (3) 0.0490 (17) 0.0405 (17) 0.0219 (13) 0.0053 (16)
N1 0.0538 (19) 0.060 (2) 0.0360 (17) 0.0223 (16) 0.0241 (15) 0.0118 (14)
N2 0.0367 (16) 0.069 (2) 0.0332 (16) 0.0281 (15) 0.0206 (13) 0.0093 (14)
N3 0.0443 (17) 0.062 (2) 0.0473 (19) 0.0251 (16) 0.0272 (15) 0.0121 (15)
C1 0.050 (2) 0.064 (2) 0.041 (2) 0.029 (2) 0.0177 (18) 0.0055 (18)
C2 0.0390 (19) 0.060 (2) 0.0346 (19) 0.0248 (18) 0.0187 (16) 0.0131 (16)
C3 0.050 (2) 0.058 (3) 0.061 (3) 0.018 (2) 0.017 (2) 0.008 (2)
C4 0.048 (2) 0.045 (2) 0.060 (3) 0.0138 (18) 0.025 (2) 0.0131 (18)
C5 0.052 (2) 0.047 (2) 0.065 (3) 0.0174 (19) 0.027 (2) 0.012 (2)
C6 0.062 (3) 0.059 (3) 0.084 (4) 0.024 (2) 0.018 (3) 0.022 (3)
C7 0.089 (4) 0.073 (3) 0.067 (3) 0.019 (3) 0.029 (3) 0.016 (3)
C8 0.103 (4) 0.075 (3) 0.078 (4) 0.024 (3) 0.058 (3) 0.013 (3)
C9 0.069 (3) 0.062 (3) 0.086 (4) 0.029 (2) 0.046 (3) 0.021 (2)
C10 0.058 (2) 0.068 (3) 0.041 (2) 0.031 (2) 0.0303 (19) 0.0182 (19)
C11 0.039 (2) 0.059 (2) 0.041 (2) 0.0201 (18) 0.0203 (17) 0.0160 (17)
C12 0.050 (2) 0.075 (3) 0.047 (2) 0.027 (2) 0.0222 (19) 0.021 (2)
C13 0.070 (3) 0.092 (4) 0.059 (3) 0.034 (3) 0.027 (2) 0.038 (3)
C14 0.095 (4) 0.097 (4) 0.090 (4) 0.056 (4) 0.036 (3) 0.053 (3)
C15 0.097 (4) 0.088 (4) 0.112 (5) 0.059 (3) 0.053 (4) 0.046 (3)
C16 0.069 (3) 0.077 (3) 0.066 (3) 0.038 (3) 0.038 (2) 0.022 (2)

Geometric parameters (Å, °)

P—O1 1.471 (3) C5—C6 1.382 (7)
P—N1 1.616 (3) C6—C7 1.367 (8)
P—N3 1.619 (3) C6—H6 0.9300
P—N2 1.682 (3) C7—C8 1.354 (8)
Cl1—C1 1.718 (4) C7—H7 0.9300
Cl2—C1 1.748 (4) C8—C9 1.388 (7)
Cl3—C5 1.741 (5) C8—H8 0.9300
Cl4—C12 1.733 (5) C9—H9 0.9300
O2—C2 1.208 (4) C10—C11 1.500 (5)
N1—C10 1.450 (5) C10—H10A 0.9700
N1—H1 0.8600 C10—H10B 0.9700
N2—C2 1.349 (4) C11—C16 1.376 (6)
N2—H2 0.8600 C11—C12 1.394 (5)
N3—C3 1.461 (5) C12—C13 1.375 (6)
N3—H3 0.8600 C13—C14 1.358 (8)
C1—C2 1.525 (5) C13—H13 0.9300
C1—H1A 0.9800 C14—C15 1.392 (8)
C3—C4 1.509 (6) C14—H14 0.9300
C3—H3A 0.9700 C15—C16 1.373 (7)
C3—H3B 0.9700 C15—H15 0.9300
C4—C5 1.381 (6) C16—H16 0.9300
C4—C9 1.392 (6)
O1—P—N1 117.84 (17) C7—C6—C5 119.7 (5)
O1—P—N3 110.86 (18) C7—C6—H6 120.1
N1—P—N3 106.48 (17) C5—C6—H6 120.1
O1—P—N2 106.38 (15) C8—C7—C6 119.7 (5)
N1—P—N2 103.08 (16) C8—C7—H7 120.2
N3—P—N2 112.03 (16) C6—C7—H7 120.2
C10—N1—P 123.7 (3) C7—C8—C9 120.7 (5)
C10—N1—H1 118.2 C7—C8—H8 119.7
P—N1—H1 118.2 C9—C8—H8 119.7
C2—N2—P 126.3 (2) C4—C9—C8 121.3 (5)
C2—N2—H2 116.9 C4—C9—H9 119.3
P—N2—H2 116.9 C8—C9—H9 119.3
C3—N3—P 122.2 (3) N1—C10—C11 114.6 (3)
C3—N3—H3 118.9 N1—C10—H10A 108.6
P—N3—H3 118.9 C11—C10—H10A 108.6
C2—C1—Cl1 111.5 (3) N1—C10—H10B 108.6
C2—C1—Cl2 109.2 (3) C11—C10—H10B 108.6
Cl1—C1—Cl2 111.2 (2) H10A—C10—H10B 107.6
C2—C1—H1A 108.3 C16—C11—C12 117.0 (4)
Cl1—C1—H1A 108.3 C16—C11—C10 123.2 (4)
Cl2—C1—H1A 108.3 C12—C11—C10 119.7 (4)
O2—C2—N2 123.9 (3) C13—C12—C11 122.2 (5)
O2—C2—C1 123.1 (3) C13—C12—Cl4 118.4 (4)
N2—C2—C1 113.0 (3) C11—C12—Cl4 119.4 (3)
N3—C3—C4 113.0 (3) C12—C13—C14 119.0 (5)
N3—C3—H3A 109.0 C12—C13—H13 120.5
C4—C3—H3A 109.0 C14—C13—H13 120.5
N3—C3—H3B 109.0 C15—C14—C13 120.8 (5)
C4—C3—H3B 109.0 C15—C14—H14 119.6
H3A—C3—H3B 107.8 C13—C14—H14 119.6
C5—C4—C9 116.2 (4) C14—C15—C16 118.9 (5)
C5—C4—C3 123.2 (4) C14—C15—H15 120.6
C9—C4—C3 120.5 (4) C16—C15—H15 120.6
C4—C5—C6 122.5 (4) C11—C16—C15 122.0 (5)
C4—C5—Cl3 119.7 (4) C11—C16—H16 119.0
C6—C5—Cl3 117.8 (4) C15—C16—H16 119.0
O1—P—N1—C10 66.5 (4) C4—C5—C6—C7 0.1 (7)
N3—P—N1—C10 −58.7 (3) Cl3—C5—C6—C7 −179.6 (4)
N2—P—N1—C10 −176.8 (3) C5—C6—C7—C8 −0.6 (8)
O1—P—N2—C2 −174.1 (3) C6—C7—C8—C9 0.4 (8)
N1—P—N2—C2 61.3 (4) C5—C4—C9—C8 −0.7 (6)
N3—P—N2—C2 −52.8 (4) C3—C4—C9—C8 175.8 (4)
O1—P—N3—C3 44.0 (3) C7—C8—C9—C4 0.3 (8)
N1—P—N3—C3 173.4 (3) P—N1—C10—C11 −121.2 (3)
N2—P—N3—C3 −74.6 (3) N1—C10—C11—C16 5.6 (6)
P—N2—C2—O2 −4.7 (6) N1—C10—C11—C12 −174.5 (4)
P—N2—C2—C1 176.0 (3) C16—C11—C12—C13 1.0 (6)
Cl1—C1—C2—O2 17.2 (5) C10—C11—C12—C13 −178.9 (4)
Cl2—C1—C2—O2 −106.1 (4) C16—C11—C12—Cl4 179.6 (3)
Cl1—C1—C2—N2 −163.5 (3) C10—C11—C12—Cl4 −0.3 (5)
Cl2—C1—C2—N2 73.2 (4) C11—C12—C13—C14 −1.4 (7)
P—N3—C3—C4 87.6 (4) Cl4—C12—C13—C14 179.9 (4)
N3—C3—C4—C5 83.3 (5) C12—C13—C14—C15 0.8 (9)
N3—C3—C4—C9 −93.0 (5) C13—C14—C15—C16 0.2 (9)
C9—C4—C5—C6 0.5 (6) C12—C11—C16—C15 0.1 (7)
C3—C4—C5—C6 −175.9 (4) C10—C11—C16—C15 180.0 (5)
C9—C4—C5—Cl3 −179.7 (3) C14—C15—C16—C11 −0.7 (8)
C3—C4—C5—Cl3 3.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1i 0.86 1.93 2.756 (4) 162
N3—H3···O2ii 0.86 2.24 3.024 (4) 151

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2102).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Ekstrom, F., Akfur, C., Tunemalm, A. & Lundberg, S. (2006). Biochemistry, 45, 74–81. [DOI] [PubMed]
  3. Gholivand, K., Dorosti, N., Shariatinia, Z., Ghaziany, F., Sarikhani, S. & Mirshahi, M. (2011). Med. Chem. Res. In the press.
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  5. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Sabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010a). Acta Cryst. E66, o344. [DOI] [PMC free article] [PubMed]
  7. Sabbaghi, F., Rostami Chaijan, M. & Pourayoubi, M. (2010b). Acta Cryst. E66, o1754. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811000845/fi2102sup1.cif

e-67-0o333-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000845/fi2102Isup2.hkl

e-67-0o333-Isup2.hkl (168.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES