Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):o399. doi: 10.1107/S1600536811001176

trans-2,3-Bis(2,4,5-trimethyl-3-thien­yl)but-2-enedinitrile

Jiang Bian a, Ying Zhang b, Xiaoyan Yan c,*
PMCID: PMC3051658  PMID: 21523072

Abstract

In title compound, C18H18N2S2, the dihedral angle between two thio­phene rings is 61.83 (8)°.

Related literature

For related structures, see: Munakata et al. (1996); Han et al. (2006).graphic file with name e-67-0o399-scheme1.jpg

Experimental

Crystal data

  • C18H18N2S2

  • M r = 326.46

  • Triclinic, Inline graphic

  • a = 8.8368 (10) Å

  • b = 9.1785 (10) Å

  • c = 11.4160 (12) Å

  • α = 85.271 (2)°

  • β = 71.058 (2)°

  • γ = 77.171 (2)°

  • V = 853.88 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 273 K

  • 0.40 × 0.32 × 0.28 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.886, T max = 0.918

  • 5025 measured reflections

  • 3686 independent reflections

  • 2264 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.175

  • S = 1.06

  • 3686 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811001176/hg2788sup1.cif

e-67-0o399-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001176/hg2788Isup2.hkl

e-67-0o399-Isup2.hkl (180.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was sponsored by the National Science Foundation of Shanxi Province of China (No. 2009011038–3)

supplementary crystallographic information

Comment

In the crystal structure of the title compound, two substituted thiophene rings are trans positioned with respect to the dicyano group. The ring skeleton of the molecule is not planar. This diarylethene with thiophene rings is prepared in an attempt to construct thermally irreversible photochromic systems. The dicyano group was selected to shift the absorption maxima of the dihydro-type isomers to longer wavelengths.

All bond lengths and angles in title compound are normal and good agreement with those previously reported. (Munakata, et al., 1996; Han et al., 2006). The dihedral angles between the two thiophene (S1/C12—C15 and S2/C1—C4) rings is 61.83 °. No classical hydrogen bonds were found, the crystal structure was mainly stabilized by Van der Waals forces.

Experimental

To 20 ml of 50% NaOH aqueous solution containing triethylbenzylammonium chloride (0.21 g, 0.0010 mol) was added a mixture of 2,3,5-trimethyl-4-(cyanomethyl)thiophene (16 g, 0.10 mol) and CCl4 (15 g, 0.10 mol) at 40 ° C. The solution was stirred for 1.5 h at 45 ° C. The reaction mixture was poured into water and the product was extracted with ether and chloroform. After the solvent was removed, the mixture of trans and cis forms was separated by column chlomatography on silica gel with light petroleum-CHCl3 (1: 1), collected the first yellow band, and then purified by recrystallization from a hexane-ether mixture. Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature for one week.

Refinement

H atoms bonded to C atoms were treated as riding atoms, with C—H distances of 0.96 Å and Uiso(H) values of 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.

Crystal data

C18H18N2S2 Z = 2
Mr = 326.46 F(000) = 344
Triclinic, P1 Dx = 1.270 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.8368 (10) Å Cell parameters from 2501 reflections
b = 9.1785 (10) Å θ = 2.3–25.1°
c = 11.4160 (12) Å µ = 0.31 mm1
α = 85.271 (2)° T = 273 K
β = 71.058 (2)° Block, yellow
γ = 77.171 (2)° 0.40 × 0.32 × 0.28 mm
V = 853.88 (16) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 3686 independent reflections
Radiation source: fine-focus sealed tube 2264 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→9
Tmin = 0.886, Tmax = 0.918 k = −11→11
5025 measured reflections l = −13→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0826P)2 + 0.1249P] where P = (Fo2 + 2Fc2)/3
3686 reflections (Δ/σ)max < 0.001
199 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.36871 (11) 0.71963 (9) 0.60411 (8) 0.0553 (3)
S2 0.40282 (12) −0.15478 (10) 0.92480 (9) 0.0616 (3)
C12 0.2777 (4) 0.4790 (3) 0.6886 (3) 0.0409 (7)
C2 0.2998 (4) 0.1229 (3) 0.8994 (3) 0.0428 (7)
C10 0.2760 (4) 0.3248 (3) 0.7386 (3) 0.0420 (7)
C15 0.1480 (4) 0.5656 (3) 0.6474 (2) 0.0410 (7)
C13 0.4056 (4) 0.5472 (4) 0.6719 (3) 0.0474 (8)
C8 0.2843 (4) 0.2788 (3) 0.8535 (3) 0.0438 (7)
C11 0.2615 (4) 0.2192 (4) 0.6591 (3) 0.0481 (8)
C14 0.1819 (4) 0.6995 (3) 0.5987 (3) 0.0459 (7)
C3 0.1900 (4) 0.0800 (3) 1.0143 (3) 0.0457 (7)
C1 0.4219 (4) 0.0072 (3) 0.8411 (3) 0.0481 (8)
C4 0.2314 (4) −0.0692 (4) 1.0389 (3) 0.0527 (8)
C18 −0.0090 (4) 0.5183 (4) 0.6644 (3) 0.0556 (9)
H18A −0.0777 0.5931 0.6298 0.083*
H18B −0.0636 0.5061 0.7512 0.083*
H18C 0.0133 0.4252 0.6232 0.083*
N2 0.2477 (4) 0.1424 (3) 0.5914 (3) 0.0682 (9)
C9 0.2797 (5) 0.3908 (4) 0.9369 (3) 0.0543 (8)
C7 0.0454 (5) 0.1843 (4) 1.0961 (3) 0.0654 (10)
H7A −0.0088 0.1304 1.1673 0.098*
H7B −0.0292 0.2258 1.0509 0.098*
H7C 0.0816 0.2635 1.1223 0.098*
N1 0.2708 (5) 0.4759 (4) 1.0067 (3) 0.0814 (11)
C6 0.5626 (4) 0.0063 (4) 0.7253 (3) 0.0651 (10)
H6A 0.5563 0.1048 0.6892 0.098*
H6B 0.5588 −0.0623 0.6677 0.098*
H6C 0.6632 −0.0242 0.7444 0.098*
C17 0.0801 (5) 0.8252 (4) 0.5472 (3) 0.0655 (10)
H17A −0.0200 0.7979 0.5506 0.098*
H17B 0.1395 0.8446 0.4628 0.098*
H17C 0.0558 0.9133 0.5953 0.098*
C16 0.5635 (4) 0.4920 (4) 0.6983 (4) 0.0648 (10)
H16A 0.5649 0.3945 0.7361 0.097*
H16B 0.5745 0.5595 0.7536 0.097*
H16C 0.6526 0.4866 0.6223 0.097*
C5 0.1468 (6) −0.1591 (4) 1.1464 (3) 0.0789 (12)
H5A 0.0541 −0.0947 1.2009 0.118*
H5B 0.2214 −0.2043 1.1906 0.118*
H5C 0.1108 −0.2356 1.1164 0.118*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0595 (6) 0.0513 (5) 0.0576 (5) −0.0242 (4) −0.0145 (4) 0.0040 (4)
S2 0.0718 (6) 0.0429 (5) 0.0699 (6) −0.0036 (4) −0.0276 (5) −0.0013 (4)
C12 0.0455 (17) 0.0419 (17) 0.0338 (15) −0.0106 (14) −0.0097 (13) −0.0001 (12)
C2 0.0490 (18) 0.0417 (17) 0.0398 (16) −0.0079 (14) −0.0178 (14) −0.0006 (13)
C10 0.0425 (17) 0.0417 (16) 0.0412 (16) −0.0105 (13) −0.0110 (13) −0.0025 (13)
C15 0.0431 (17) 0.0462 (17) 0.0327 (15) −0.0112 (14) −0.0094 (13) −0.0006 (13)
C13 0.0443 (18) 0.0493 (19) 0.0475 (17) −0.0128 (15) −0.0104 (14) −0.0026 (14)
C8 0.0510 (18) 0.0394 (16) 0.0399 (16) −0.0092 (14) −0.0126 (14) −0.0028 (13)
C11 0.055 (2) 0.0485 (19) 0.0433 (17) −0.0162 (15) −0.0156 (15) 0.0022 (15)
C14 0.0520 (19) 0.0447 (18) 0.0411 (16) −0.0101 (15) −0.0151 (14) 0.0010 (14)
C3 0.0533 (19) 0.0490 (18) 0.0367 (16) −0.0127 (15) −0.0153 (14) −0.0003 (13)
C1 0.0486 (19) 0.0449 (18) 0.0508 (18) −0.0058 (15) −0.0169 (15) −0.0058 (15)
C4 0.069 (2) 0.0485 (19) 0.0479 (18) −0.0186 (17) −0.0261 (16) 0.0059 (15)
C18 0.051 (2) 0.063 (2) 0.058 (2) −0.0173 (17) −0.0203 (16) 0.0035 (17)
N2 0.084 (2) 0.066 (2) 0.0641 (19) −0.0231 (17) −0.0289 (17) −0.0100 (17)
C9 0.073 (2) 0.0437 (18) 0.0458 (18) −0.0077 (17) −0.0213 (17) −0.0013 (15)
C7 0.072 (2) 0.065 (2) 0.051 (2) −0.0134 (19) −0.0064 (18) −0.0075 (17)
N1 0.130 (3) 0.057 (2) 0.060 (2) −0.019 (2) −0.032 (2) −0.0110 (17)
C6 0.050 (2) 0.064 (2) 0.070 (2) −0.0069 (18) −0.0050 (18) −0.0098 (19)
C17 0.084 (3) 0.051 (2) 0.063 (2) −0.0120 (19) −0.029 (2) 0.0108 (17)
C16 0.050 (2) 0.069 (2) 0.081 (3) −0.0162 (18) −0.0243 (19) −0.006 (2)
C5 0.117 (4) 0.067 (3) 0.060 (2) −0.038 (2) −0.031 (2) 0.017 (2)

Geometric parameters (Å, °)

S1—C13 1.716 (3) C4—C5 1.503 (5)
S1—C14 1.723 (3) C18—H18A 0.9600
S2—C1 1.711 (3) C18—H18B 0.9600
S2—C4 1.723 (4) C18—H18C 0.9600
C12—C13 1.364 (4) C9—N1 1.133 (4)
C12—C15 1.432 (4) C7—H7A 0.9600
C12—C10 1.483 (4) C7—H7B 0.9600
C2—C1 1.370 (4) C7—H7C 0.9600
C2—C3 1.441 (4) C6—H6A 0.9600
C2—C8 1.476 (4) C6—H6B 0.9600
C10—C8 1.364 (4) C6—H6C 0.9600
C10—C11 1.433 (4) C17—H17A 0.9600
C15—C14 1.361 (4) C17—H17B 0.9600
C15—C18 1.493 (4) C17—H17C 0.9600
C13—C16 1.492 (5) C16—H16A 0.9600
C8—C9 1.443 (4) C16—H16B 0.9600
C11—N2 1.140 (4) C16—H16C 0.9600
C14—C17 1.502 (4) C5—H5A 0.9600
C3—C4 1.367 (4) C5—H5B 0.9600
C3—C7 1.500 (5) C5—H5C 0.9600
C1—C6 1.491 (5)
C13—S1—C14 92.95 (15) H18A—C18—H18B 109.5
C1—S2—C4 93.19 (15) C15—C18—H18C 109.5
C13—C12—C15 114.4 (3) H18A—C18—H18C 109.5
C13—C12—C10 123.2 (3) H18B—C18—H18C 109.5
C15—C12—C10 122.3 (3) N1—C9—C8 176.8 (4)
C1—C2—C3 113.7 (3) C3—C7—H7A 109.5
C1—C2—C8 124.0 (3) C3—C7—H7B 109.5
C3—C2—C8 122.3 (3) H7A—C7—H7B 109.5
C8—C10—C11 118.9 (3) C3—C7—H7C 109.5
C8—C10—C12 124.9 (3) H7A—C7—H7C 109.5
C11—C10—C12 116.2 (2) H7B—C7—H7C 109.5
C14—C15—C12 111.4 (3) C1—C6—H6A 109.5
C14—C15—C18 124.7 (3) C1—C6—H6B 109.5
C12—C15—C18 123.8 (3) H6A—C6—H6B 109.5
C12—C13—C16 130.3 (3) C1—C6—H6C 109.5
C12—C13—S1 109.8 (2) H6A—C6—H6C 109.5
C16—C13—S1 119.8 (2) H6B—C6—H6C 109.5
C10—C8—C9 117.8 (3) C14—C17—H17A 109.5
C10—C8—C2 125.3 (3) C14—C17—H17B 109.5
C9—C8—C2 116.9 (3) H17A—C17—H17B 109.5
N2—C11—C10 175.8 (3) C14—C17—H17C 109.5
C15—C14—C17 129.5 (3) H17A—C17—H17C 109.5
C15—C14—S1 111.4 (2) H17B—C17—H17C 109.5
C17—C14—S1 119.1 (3) C13—C16—H16A 109.5
C4—C3—C2 111.6 (3) C13—C16—H16B 109.5
C4—C3—C7 123.7 (3) H16A—C16—H16B 109.5
C2—C3—C7 124.6 (3) C13—C16—H16C 109.5
C2—C1—C6 130.3 (3) H16A—C16—H16C 109.5
C2—C1—S2 110.3 (2) H16B—C16—H16C 109.5
C6—C1—S2 119.4 (2) C4—C5—H5A 109.5
C3—C4—C5 128.6 (3) C4—C5—H5B 109.5
C3—C4—S2 111.2 (2) H5A—C5—H5B 109.5
C5—C4—S2 120.2 (3) C4—C5—H5C 109.5
C15—C18—H18A 109.5 H5A—C5—H5C 109.5
C15—C18—H18B 109.5 H5B—C5—H5C 109.5
C13—C12—C10—C8 61.6 (4) C12—C15—C14—C17 −178.7 (3)
C15—C12—C10—C8 −121.9 (3) C18—C15—C14—C17 −2.8 (5)
C13—C12—C10—C11 −119.5 (3) C12—C15—C14—S1 −0.3 (3)
C15—C12—C10—C11 57.0 (4) C18—C15—C14—S1 175.6 (2)
C13—C12—C15—C14 0.4 (4) C13—S1—C14—C15 0.1 (2)
C10—C12—C15—C14 −176.3 (3) C13—S1—C14—C17 178.7 (3)
C13—C12—C15—C18 −175.5 (3) C1—C2—C3—C4 −0.9 (4)
C10—C12—C15—C18 7.7 (4) C8—C2—C3—C4 −178.3 (3)
C15—C12—C13—C16 −177.6 (3) C1—C2—C3—C7 −179.5 (3)
C10—C12—C13—C16 −0.9 (5) C8—C2—C3—C7 3.1 (5)
C15—C12—C13—S1 −0.3 (3) C3—C2—C1—C6 −176.8 (3)
C10—C12—C13—S1 176.4 (2) C8—C2—C1—C6 0.6 (5)
C14—S1—C13—C12 0.1 (2) C3—C2—C1—S2 0.6 (3)
C14—S1—C13—C16 177.7 (3) C8—C2—C1—S2 177.9 (2)
C11—C10—C8—C9 −173.0 (3) C4—S2—C1—C2 −0.1 (3)
C12—C10—C8—C9 5.9 (5) C4—S2—C1—C6 177.6 (3)
C11—C10—C8—C2 7.8 (5) C2—C3—C4—C5 −178.2 (3)
C12—C10—C8—C2 −173.3 (3) C7—C3—C4—C5 0.4 (5)
C1—C2—C8—C10 55.5 (5) C2—C3—C4—S2 0.8 (3)
C3—C2—C8—C10 −127.3 (3) C7—C3—C4—S2 179.4 (3)
C1—C2—C8—C9 −123.7 (3) C1—S2—C4—C3 −0.4 (3)
C3—C2—C8—C9 53.5 (4) C1—S2—C4—C5 178.7 (3)
C8—C10—C11—N2 167 (5) C10—C8—C9—N1 133 (7)
C12—C10—C11—N2 −12 (5) C2—C8—C9—N1 −48 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2788).

References

  1. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Han, J., Nabei, A., Suenaga, Y., Maekawa, M., Isihara, H., Kuroda-Sowa, T. & Munakata, M. (2006). Polyhedron, 25, 2483–2490.
  4. Munakata, M., Wu, L. P., Kuroda-Sowa, T., Maekawa, M., Suenaga, Y. & Furuichi, K. (1996). J. Am. Chem. Soc. 118, 3305–3306.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811001176/hg2788sup1.cif

e-67-0o399-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001176/hg2788Isup2.hkl

e-67-0o399-Isup2.hkl (180.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES