Abstract
In the title compound, C16H16ClNO2, the molecule adopts a bowed conformation, with a dihedral angle of 39.9 (2)° between the aromatic rings. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, generating C(6) chains propagating in [010]. Very weak aromatic π–π stacking is also observed [centroid–centroid distance = 4.040 (2) Å].
Related literature
For the synthesis of quinoline derivatives, see: Peifer et al. (2007 ▶). For background to the antimicrobial activity of quinolines, see: Yamashkin & Oreshkina (2006 ▶). For further synthetic details, see: Dienys et al. (1977 ▶); Volkov et al. (2007 ▶).
Experimental
Crystal data
C16H16ClNO2
M r = 289.75
Orthorhombic,
a = 7.1690 (6) Å
b = 14.4303 (11) Å
c = 28.667 (3) Å
V = 2965.6 (4) Å3
Z = 8
Mo Kα radiation
μ = 0.26 mm−1
T = 293 K
0.48 × 0.36 × 0.20 mm
Data collection
Rigaku AFC-7S Mercury diffractometer
Absorption correction: multi-scan (REQAB; Jacobson, 1998 ▶) T min = 0.927, T max = 0.950
31012 measured reflections
3035 independent reflections
2016 reflections with I > 2σ(I)
R int = 0.057
Refinement
R[F 2 > 2σ(F 2)] = 0.077
wR(F 2) = 0.198
S = 1.14
3035 reflections
182 parameters
H-atom parameters constrained
Δρmax = 0.16 e Å−3
Δρmin = −0.26 e Å−3
Data collection: CrystalClear (Rigaku/MSC, 2005 ▶); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: CrystalStructure (Rigaku/MSC, 2005) ▶ and SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999 ▶); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810054449/hb5773sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054449/hb5773Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C15—H15A⋯O2i | 0.93 | 2.49 | 3.414 (4) | 171 |
Symmetry code: (i)
.
Acknowledgments
The authors thank the Decanato de Investigación y Desarrollo (DID-USB, Caracas) and the FONACIT–MCT (project LAB-97000821) for financial support. LL thanks the Decanato de Estudios de Postgrado (USB, Caracas) for a travel-training fellowship.
supplementary crystallographic information
Comment
The title compound was prepared as an intermediate for the synthesis of 4-aryl-8-methoxy-quinoline under acid conditions (Dienys et al., 1977). The synthesis of the title compound might be obtained through decyclization of piperidol and transamination of the decyclization products (Volkov et al., 2007). These compounds exhibit a broad range of antimicrobial activity and particular, antitubercular activity, antimalarial activity and are also present in antiallergic and antiasthmatic agents (Yamashkin & Oreshkina, 2006). In addition, these compounds could act as drug targets of a large numbers of protein-inhibitor complexes, for example the mitogen-activated protein kinase (Peifer et al., 2007).
The X-ray structure determination showed that compound (I) contains only one organic molecule per asymmetric unit (Fig. 1). The molecule adopts a slightly angular conformation, where the dihedral angle defined by aromatic rings is 39.9 (2)°. respectively. The crystal packing (Fig. 2) of this structure consists of infinite chains which are interconnected through hydrogen bonding interactions of the kind C—H···O (3.415 Å) along the bc plane. The final array (Fig. 3) is sustained by weak interactions of the kind π···π between aromatics rings with distance between centroid to centroid, Cg2···Cg2: 4.040 (2) Å. Where Cg2 is defined by C11/C12/C13/C14/C15/C16 atoms.
Experimental
A solution of 3-(4-chlorophenyl)-N,N-dimethyl-3-oxopropan-1-aminium chloride (0.01 mol) in distilled water (5 ml) was stirred at room temperature in a round bottom flask. After 5 minutes, a solution of 2-methoxy-phenylamine (0.01 mol) and concentrated hydrochloric acid (0.5 ml) in ethanol (10 ml) was added dropwise and the mixture was stirred at room temperature for 12 h to yield yellow blocks of (I). Yield: 79%. M.p. 83–84°C; 1H NMR (400 MHz, CDCl3, δ (p.p.m.), J= Hz): 3.27 (t, 2H, J= 6.4), 3.64 (t, 2H, J= 6.4), 3.81 (s, 3H), 4.57 (s, 1H), 6.68 (m, 2H), 6.76 (dd, 1H, J= 8.4, 1.5), 6.88 (td, 1H, J= 7.6, 1.1), 7.42 (d, 2H, J= 8.4), 7.87 (d, 2H, J= 8.4). 13C NMR (100 MHz, CDCl3, δ (p.p.m.)): 38.0 (C9), 38.4 (C8), 55.5 (C7), 109.7 (C3), 109.9 (C6), 116.9 (C4), 121.3 (C5), 129.0 (C13 and C15), 129.5 (C12 and C16), 135.2 (C1), 137.6 (C11), 139.8 (C14), 147.2 (C7), 200.0 (C10). IR (KBr, cm-1): 3413, 3085, 3061, 2961, 1685, 1074, 792. EI—MS (m/z): 290.37 [M+•], 292.37 [M+• +2], 136.07 [M+• – (4-ClPhCOCH2)].
Refinement
The N-bound H atoms were located in difference maps and refined as riding in their as found relative positions with Uiso(H) = 1.5Ueq(N). The C-bound H atoms were placed in idealized positions (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
The molecular structure of (I), showing displacement elipsoids drawn at the 35% probability level and H atoms shown as spheres of arbitrary radii.
Fig. 2.
View of infinite chains interconnected through hydrogen bonding interactions of the kind C—H···O along the bc plane. Dashed lines indicate the donor···acceptor interactions for hydrogen bonds.
Fig. 3.
View of the weak interactions of the kind π···π in the structure
Crystal data
| C16H16ClNO2 | F(000) = 1216 |
| Mr = 289.75 | Dx = 1.298 Mg m−3 |
| Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71070 Å |
| Hall symbol: -P 2ac 2ab | Cell parameters from 13752 reflections |
| a = 7.1690 (6) Å | θ = 2.8–56.1° |
| b = 14.4303 (11) Å | µ = 0.26 mm−1 |
| c = 28.667 (3) Å | T = 293 K |
| V = 2965.6 (4) Å3 | Block, yellow |
| Z = 8 | 0.48 × 0.36 × 0.20 mm |
Data collection
| Rigaku AFC-7S Mercury diffractometer | 3035 independent reflections |
| Radiation source: fine-focus sealed tube | 2016 reflections with I > 2σ(I) |
| graphite | Rint = 0.057 |
| ω scans | θmax = 28.0°, θmin = 2.8° |
| Absorption correction: multi-scan (REQAB; Jacobson, 1998) | h = −8→8 |
| Tmin = 0.927, Tmax = 0.950 | k = −17→13 |
| 31012 measured reflections | l = −34→34 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.077 | H-atom parameters constrained |
| wR(F2) = 0.198 | w = 1/[σ2(Fo2) + (0.0693P)2 + 1.923P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.14 | (Δ/σ)max < 0.001 |
| 3035 reflections | Δρmax = 0.16 e Å−3 |
| 182 parameters | Δρmin = −0.26 e Å−3 |
| 0 restraints | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0045 (11) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.69107 (15) | 0.62967 (7) | 0.61228 (4) | 0.0854 (4) | |
| O1 | 0.4661 (4) | 0.2337 (2) | 0.30790 (9) | 0.0883 (9) | |
| O2 | 0.9890 (4) | 0.25566 (16) | 0.49786 (9) | 0.0727 (7) | |
| N1 | 0.7477 (5) | 0.2272 (2) | 0.36535 (10) | 0.0684 (8) | |
| H1 | 0.6749 | 0.2852 | 0.3609 | 0.103* | |
| C1 | 0.7033 (5) | 0.1459 (2) | 0.34171 (11) | 0.0623 (9) | |
| C2 | 0.5513 (6) | 0.1488 (3) | 0.31054 (12) | 0.0690 (10) | |
| C3 | 0.5005 (7) | 0.0718 (3) | 0.28559 (14) | 0.0866 (13) | |
| H3A | 0.4010 | 0.0746 | 0.2648 | 0.104* | |
| C4 | 0.5979 (9) | −0.0100 (3) | 0.29143 (16) | 0.1005 (16) | |
| H4A | 0.5628 | −0.0626 | 0.2748 | 0.121* | |
| C5 | 0.7461 (9) | −0.0141 (3) | 0.32167 (16) | 0.0958 (15) | |
| H5A | 0.8109 | −0.0695 | 0.3254 | 0.115* | |
| C6 | 0.8003 (6) | 0.0638 (3) | 0.34675 (13) | 0.0783 (11) | |
| H6A | 0.9018 | 0.0607 | 0.3669 | 0.094* | |
| C7 | 0.3001 (8) | 0.2415 (4) | 0.28063 (18) | 0.123 (2) | |
| H7A | 0.2579 | 0.3046 | 0.2809 | 0.185* | |
| H7B | 0.2051 | 0.2023 | 0.2935 | 0.185* | |
| H7C | 0.3257 | 0.2229 | 0.2491 | 0.185* | |
| C8 | 0.8471 (5) | 0.2253 (2) | 0.40935 (12) | 0.0654 (9) | |
| H8A | 0.9791 | 0.2153 | 0.4038 | 0.078* | |
| H8B | 0.8010 | 0.1748 | 0.4285 | 0.078* | |
| C9 | 0.8179 (5) | 0.3165 (2) | 0.43408 (11) | 0.0573 (8) | |
| H9A | 0.8793 | 0.3651 | 0.4164 | 0.069* | |
| H9B | 0.6855 | 0.3304 | 0.4346 | 0.069* | |
| C10 | 0.8898 (5) | 0.3180 (2) | 0.48287 (11) | 0.0554 (8) | |
| C11 | 0.8363 (4) | 0.3968 (2) | 0.51434 (11) | 0.0541 (8) | |
| C12 | 0.8721 (5) | 0.3894 (2) | 0.56181 (12) | 0.0667 (10) | |
| H12A | 0.9276 | 0.3360 | 0.5735 | 0.080* | |
| C13 | 0.8258 (5) | 0.4607 (3) | 0.59179 (12) | 0.0697 (10) | |
| H13A | 0.8488 | 0.4551 | 0.6236 | 0.084* | |
| C14 | 0.7456 (5) | 0.5401 (2) | 0.57432 (12) | 0.0605 (9) | |
| C15 | 0.7108 (5) | 0.5491 (2) | 0.52753 (13) | 0.0621 (9) | |
| H15A | 0.6576 | 0.6032 | 0.5159 | 0.074* | |
| C16 | 0.7554 (5) | 0.4773 (2) | 0.49781 (12) | 0.0580 (8) | |
| H16A | 0.7306 | 0.4831 | 0.4661 | 0.070* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0803 (8) | 0.0852 (7) | 0.0905 (8) | 0.0111 (5) | −0.0050 (5) | −0.0216 (5) |
| O1 | 0.093 (2) | 0.092 (2) | 0.0794 (19) | 0.0084 (16) | −0.0267 (15) | −0.0150 (14) |
| O2 | 0.0761 (17) | 0.0629 (15) | 0.0790 (16) | 0.0129 (12) | −0.0181 (13) | 0.0009 (12) |
| N1 | 0.086 (2) | 0.0609 (17) | 0.0581 (17) | −0.0038 (15) | −0.0151 (16) | 0.0005 (13) |
| C1 | 0.076 (2) | 0.062 (2) | 0.0493 (19) | −0.0098 (18) | 0.0071 (17) | 0.0004 (15) |
| C2 | 0.085 (3) | 0.071 (2) | 0.051 (2) | −0.013 (2) | 0.0041 (19) | −0.0045 (17) |
| C3 | 0.104 (3) | 0.089 (3) | 0.067 (3) | −0.026 (3) | 0.005 (2) | −0.011 (2) |
| C4 | 0.148 (5) | 0.080 (3) | 0.074 (3) | −0.035 (3) | 0.017 (3) | −0.016 (2) |
| C5 | 0.148 (5) | 0.058 (2) | 0.081 (3) | 0.001 (3) | 0.024 (3) | 0.002 (2) |
| C6 | 0.100 (3) | 0.065 (2) | 0.070 (2) | −0.001 (2) | 0.008 (2) | 0.0031 (19) |
| C7 | 0.114 (4) | 0.147 (5) | 0.109 (4) | 0.022 (3) | −0.050 (3) | −0.021 (3) |
| C8 | 0.065 (2) | 0.066 (2) | 0.064 (2) | −0.0021 (17) | −0.0099 (18) | −0.0009 (16) |
| C9 | 0.0517 (19) | 0.061 (2) | 0.059 (2) | −0.0049 (15) | −0.0056 (15) | 0.0038 (15) |
| C10 | 0.0472 (18) | 0.0536 (19) | 0.065 (2) | −0.0073 (15) | −0.0069 (15) | 0.0057 (15) |
| C11 | 0.0432 (17) | 0.0570 (19) | 0.062 (2) | −0.0058 (14) | −0.0074 (15) | 0.0039 (15) |
| C12 | 0.073 (2) | 0.062 (2) | 0.065 (2) | 0.0093 (17) | −0.0146 (18) | 0.0044 (16) |
| C13 | 0.077 (2) | 0.078 (2) | 0.054 (2) | 0.0080 (19) | −0.0122 (18) | −0.0015 (18) |
| C14 | 0.0523 (19) | 0.061 (2) | 0.068 (2) | −0.0029 (16) | −0.0025 (17) | −0.0043 (16) |
| C15 | 0.056 (2) | 0.0540 (19) | 0.076 (2) | −0.0010 (15) | −0.0092 (17) | 0.0093 (17) |
| C16 | 0.0564 (19) | 0.058 (2) | 0.060 (2) | −0.0017 (15) | −0.0091 (16) | 0.0050 (15) |
Geometric parameters (Å, °)
| Cl1—C14 | 1.734 (3) | C7—H7C | 0.9600 |
| O1—C2 | 1.371 (4) | C8—C9 | 1.510 (4) |
| O1—C7 | 1.428 (5) | C8—H8A | 0.9700 |
| O2—C10 | 1.224 (4) | C8—H8B | 0.9700 |
| N1—C1 | 1.392 (4) | C9—C10 | 1.491 (4) |
| N1—C8 | 1.449 (4) | C9—H9A | 0.9700 |
| N1—H1 | 0.9952 | C9—H9B | 0.9700 |
| C1—C6 | 1.381 (5) | C10—C11 | 1.501 (5) |
| C1—C2 | 1.410 (5) | C11—C16 | 1.382 (4) |
| C2—C3 | 1.370 (5) | C11—C12 | 1.389 (5) |
| C3—C4 | 1.382 (7) | C12—C13 | 1.381 (5) |
| C3—H3A | 0.9300 | C12—H12A | 0.9300 |
| C4—C5 | 1.373 (7) | C13—C14 | 1.377 (5) |
| C4—H4A | 0.9300 | C13—H13A | 0.9300 |
| C5—C6 | 1.390 (6) | C14—C15 | 1.371 (5) |
| C5—H5A | 0.9300 | C15—C16 | 1.379 (5) |
| C6—H6A | 0.9300 | C15—H15A | 0.9300 |
| C7—H7A | 0.9600 | C16—H16A | 0.9300 |
| C7—H7B | 0.9600 | ||
| C2—O1—C7 | 118.2 (3) | N1—C8—H8B | 109.9 |
| C1—N1—C8 | 121.3 (3) | C9—C8—H8B | 109.9 |
| C1—N1—H1 | 121.8 | H8A—C8—H8B | 108.3 |
| C8—N1—H1 | 112.7 | C10—C9—C8 | 113.9 (3) |
| C6—C1—N1 | 123.8 (3) | C10—C9—H9A | 108.8 |
| C6—C1—C2 | 118.8 (3) | C8—C9—H9A | 108.8 |
| N1—C1—C2 | 117.4 (3) | C10—C9—H9B | 108.8 |
| C3—C2—O1 | 125.3 (4) | C8—C9—H9B | 108.8 |
| C3—C2—C1 | 120.8 (4) | H9A—C9—H9B | 107.7 |
| O1—C2—C1 | 113.9 (3) | O2—C10—C9 | 121.3 (3) |
| C2—C3—C4 | 119.7 (4) | O2—C10—C11 | 119.6 (3) |
| C2—C3—H3A | 120.1 | C9—C10—C11 | 119.1 (3) |
| C4—C3—H3A | 120.1 | C16—C11—C12 | 118.6 (3) |
| C5—C4—C3 | 120.3 (4) | C16—C11—C10 | 122.5 (3) |
| C5—C4—H4A | 119.9 | C12—C11—C10 | 118.9 (3) |
| C3—C4—H4A | 119.9 | C13—C12—C11 | 120.5 (3) |
| C4—C5—C6 | 120.6 (4) | C13—C12—H12A | 119.7 |
| C4—C5—H5A | 119.7 | C11—C12—H12A | 119.7 |
| C6—C5—H5A | 119.7 | C14—C13—C12 | 119.6 (3) |
| C1—C6—C5 | 119.9 (4) | C14—C13—H13A | 120.2 |
| C1—C6—H6A | 120.0 | C12—C13—H13A | 120.2 |
| C5—C6—H6A | 120.0 | C15—C14—C13 | 120.8 (3) |
| O1—C7—H7A | 109.5 | C15—C14—Cl1 | 120.1 (3) |
| O1—C7—H7B | 109.5 | C13—C14—Cl1 | 119.1 (3) |
| H7A—C7—H7B | 109.5 | C14—C15—C16 | 119.4 (3) |
| O1—C7—H7C | 109.5 | C14—C15—H15A | 120.3 |
| H7A—C7—H7C | 109.5 | C16—C15—H15A | 120.3 |
| H7B—C7—H7C | 109.5 | C15—C16—C11 | 121.1 (3) |
| N1—C8—C9 | 108.9 (3) | C15—C16—H16A | 119.4 |
| N1—C8—H8A | 109.9 | C11—C16—H16A | 119.4 |
| C9—C8—H8A | 109.9 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C15—H15A···O2i | 0.93 | 2.49 | 3.414 (4) | 171 |
Symmetry codes: (i) −x+3/2, y+1/2, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5773).
References
- Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Dienys, G., Gureviciene, J., Cekuoliene, L. & Steponavicius, J. (1977). Lietuvus TSR Mokslu akademijos darbai Ser. B, 1, 33–38.
- Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan
- Peifer, C., Kinkel, K., Abadleh, M., Schollmeyer, D. & Laufer, S. (2007). J. Med. Chem. 50, 1213–1221. [DOI] [PubMed]
- Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Volkov, S. V., Kutyakov, S. V., Levov, A. N., Polyakova, E. I., Anh, L. T., Soldatova, S. A., Terentiev, P. B. & Soldatenkov, A. T. (2007). Chem. Heterocycl. Compd, 43, 445–453.
- Yamashkin, S. A. & Oreshkina, E. A. (2006). Chem. Heterocycl. Compd, 42, 701–718.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810054449/hb5773sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054449/hb5773Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



