Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 12;67(Pt 2):o315. doi: 10.1107/S1600536810054449

1-(4-Chloro­phen­yl)-3-(2-meth­oxy­anilino)propan-1-one

Ligia Llovera a, Pavel Anzenbacher Jr b, Simón E López a, Teresa González c,*
PMCID: PMC3051662  PMID: 21523002

Abstract

In the title compound, C16H16ClNO2, the mol­ecule adopts a bowed conformation, with a dihedral angle of 39.9 (2)° between the aromatic rings. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, generating C(6) chains propagating in [010]. Very weak aromatic π–π stacking is also observed [centroid–centroid distance = 4.040 (2) Å].

Related literature

For the synthesis of quinoline derivatives, see: Peifer et al. (2007). For background to the anti­microbial activity of quinolines, see: Yamashkin & Oreshkina (2006). For further synthetic details, see: Dienys et al. (1977); Volkov et al. (2007).graphic file with name e-67-0o315-scheme1.jpg

Experimental

Crystal data

  • C16H16ClNO2

  • M r = 289.75

  • Orthorhombic, Inline graphic

  • a = 7.1690 (6) Å

  • b = 14.4303 (11) Å

  • c = 28.667 (3) Å

  • V = 2965.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.48 × 0.36 × 0.20 mm

Data collection

  • Rigaku AFC-7S Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.927, T max = 0.950

  • 31012 measured reflections

  • 3035 independent reflections

  • 2016 reflections with I > 2σ(I)

  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.077

  • wR(F 2) = 0.198

  • S = 1.14

  • 3035 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: CrystalStructure (Rigaku/MSC, 2005) and SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810054449/hb5773sup1.cif

e-67-0o315-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054449/hb5773Isup2.hkl

e-67-0o315-Isup2.hkl (149KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.93 2.49 3.414 (4) 171

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Decanato de Investigación y Desarrollo (DID-USB, Caracas) and the FONACIT–MCT (project LAB-97000821) for financial support. LL thanks the Decanato de Estudios de Postgrado (USB, Caracas) for a travel-training fellowship.

supplementary crystallographic information

Comment

The title compound was prepared as an intermediate for the synthesis of 4-aryl-8-methoxy-quinoline under acid conditions (Dienys et al., 1977). The synthesis of the title compound might be obtained through decyclization of piperidol and transamination of the decyclization products (Volkov et al., 2007). These compounds exhibit a broad range of antimicrobial activity and particular, antitubercular activity, antimalarial activity and are also present in antiallergic and antiasthmatic agents (Yamashkin & Oreshkina, 2006). In addition, these compounds could act as drug targets of a large numbers of protein-inhibitor complexes, for example the mitogen-activated protein kinase (Peifer et al., 2007).

The X-ray structure determination showed that compound (I) contains only one organic molecule per asymmetric unit (Fig. 1). The molecule adopts a slightly angular conformation, where the dihedral angle defined by aromatic rings is 39.9 (2)°. respectively. The crystal packing (Fig. 2) of this structure consists of infinite chains which are interconnected through hydrogen bonding interactions of the kind C—H···O (3.415 Å) along the bc plane. The final array (Fig. 3) is sustained by weak interactions of the kind π···π between aromatics rings with distance between centroid to centroid, Cg2···Cg2: 4.040 (2) Å. Where Cg2 is defined by C11/C12/C13/C14/C15/C16 atoms.

Experimental

A solution of 3-(4-chlorophenyl)-N,N-dimethyl-3-oxopropan-1-aminium chloride (0.01 mol) in distilled water (5 ml) was stirred at room temperature in a round bottom flask. After 5 minutes, a solution of 2-methoxy-phenylamine (0.01 mol) and concentrated hydrochloric acid (0.5 ml) in ethanol (10 ml) was added dropwise and the mixture was stirred at room temperature for 12 h to yield yellow blocks of (I). Yield: 79%. M.p. 83–84°C; 1H NMR (400 MHz, CDCl3, δ (p.p.m.), J= Hz): 3.27 (t, 2H, J= 6.4), 3.64 (t, 2H, J= 6.4), 3.81 (s, 3H), 4.57 (s, 1H), 6.68 (m, 2H), 6.76 (dd, 1H, J= 8.4, 1.5), 6.88 (td, 1H, J= 7.6, 1.1), 7.42 (d, 2H, J= 8.4), 7.87 (d, 2H, J= 8.4). 13C NMR (100 MHz, CDCl3, δ (p.p.m.)): 38.0 (C9), 38.4 (C8), 55.5 (C7), 109.7 (C3), 109.9 (C6), 116.9 (C4), 121.3 (C5), 129.0 (C13 and C15), 129.5 (C12 and C16), 135.2 (C1), 137.6 (C11), 139.8 (C14), 147.2 (C7), 200.0 (C10). IR (KBr, cm-1): 3413, 3085, 3061, 2961, 1685, 1074, 792. EI—MS (m/z): 290.37 [M+•], 292.37 [M+• +2], 136.07 [M+• – (4-ClPhCOCH2)].

Refinement

The N-bound H atoms were located in difference maps and refined as riding in their as found relative positions with Uiso(H) = 1.5Ueq(N). The C-bound H atoms were placed in idealized positions (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing displacement elipsoids drawn at the 35% probability level and H atoms shown as spheres of arbitrary radii.

Fig. 2.

Fig. 2.

View of infinite chains interconnected through hydrogen bonding interactions of the kind C—H···O along the bc plane. Dashed lines indicate the donor···acceptor interactions for hydrogen bonds.

Fig. 3.

Fig. 3.

View of the weak interactions of the kind π···π in the structure

Crystal data

C16H16ClNO2 F(000) = 1216
Mr = 289.75 Dx = 1.298 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ac 2ab Cell parameters from 13752 reflections
a = 7.1690 (6) Å θ = 2.8–56.1°
b = 14.4303 (11) Å µ = 0.26 mm1
c = 28.667 (3) Å T = 293 K
V = 2965.6 (4) Å3 Block, yellow
Z = 8 0.48 × 0.36 × 0.20 mm

Data collection

Rigaku AFC-7S Mercury diffractometer 3035 independent reflections
Radiation source: fine-focus sealed tube 2016 reflections with I > 2σ(I)
graphite Rint = 0.057
ω scans θmax = 28.0°, θmin = 2.8°
Absorption correction: multi-scan (REQAB; Jacobson, 1998) h = −8→8
Tmin = 0.927, Tmax = 0.950 k = −17→13
31012 measured reflections l = −34→34

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077 H-atom parameters constrained
wR(F2) = 0.198 w = 1/[σ2(Fo2) + (0.0693P)2 + 1.923P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max < 0.001
3035 reflections Δρmax = 0.16 e Å3
182 parameters Δρmin = −0.26 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0045 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.69107 (15) 0.62967 (7) 0.61228 (4) 0.0854 (4)
O1 0.4661 (4) 0.2337 (2) 0.30790 (9) 0.0883 (9)
O2 0.9890 (4) 0.25566 (16) 0.49786 (9) 0.0727 (7)
N1 0.7477 (5) 0.2272 (2) 0.36535 (10) 0.0684 (8)
H1 0.6749 0.2852 0.3609 0.103*
C1 0.7033 (5) 0.1459 (2) 0.34171 (11) 0.0623 (9)
C2 0.5513 (6) 0.1488 (3) 0.31054 (12) 0.0690 (10)
C3 0.5005 (7) 0.0718 (3) 0.28559 (14) 0.0866 (13)
H3A 0.4010 0.0746 0.2648 0.104*
C4 0.5979 (9) −0.0100 (3) 0.29143 (16) 0.1005 (16)
H4A 0.5628 −0.0626 0.2748 0.121*
C5 0.7461 (9) −0.0141 (3) 0.32167 (16) 0.0958 (15)
H5A 0.8109 −0.0695 0.3254 0.115*
C6 0.8003 (6) 0.0638 (3) 0.34675 (13) 0.0783 (11)
H6A 0.9018 0.0607 0.3669 0.094*
C7 0.3001 (8) 0.2415 (4) 0.28063 (18) 0.123 (2)
H7A 0.2579 0.3046 0.2809 0.185*
H7B 0.2051 0.2023 0.2935 0.185*
H7C 0.3257 0.2229 0.2491 0.185*
C8 0.8471 (5) 0.2253 (2) 0.40935 (12) 0.0654 (9)
H8A 0.9791 0.2153 0.4038 0.078*
H8B 0.8010 0.1748 0.4285 0.078*
C9 0.8179 (5) 0.3165 (2) 0.43408 (11) 0.0573 (8)
H9A 0.8793 0.3651 0.4164 0.069*
H9B 0.6855 0.3304 0.4346 0.069*
C10 0.8898 (5) 0.3180 (2) 0.48287 (11) 0.0554 (8)
C11 0.8363 (4) 0.3968 (2) 0.51434 (11) 0.0541 (8)
C12 0.8721 (5) 0.3894 (2) 0.56181 (12) 0.0667 (10)
H12A 0.9276 0.3360 0.5735 0.080*
C13 0.8258 (5) 0.4607 (3) 0.59179 (12) 0.0697 (10)
H13A 0.8488 0.4551 0.6236 0.084*
C14 0.7456 (5) 0.5401 (2) 0.57432 (12) 0.0605 (9)
C15 0.7108 (5) 0.5491 (2) 0.52753 (13) 0.0621 (9)
H15A 0.6576 0.6032 0.5159 0.074*
C16 0.7554 (5) 0.4773 (2) 0.49781 (12) 0.0580 (8)
H16A 0.7306 0.4831 0.4661 0.070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0803 (8) 0.0852 (7) 0.0905 (8) 0.0111 (5) −0.0050 (5) −0.0216 (5)
O1 0.093 (2) 0.092 (2) 0.0794 (19) 0.0084 (16) −0.0267 (15) −0.0150 (14)
O2 0.0761 (17) 0.0629 (15) 0.0790 (16) 0.0129 (12) −0.0181 (13) 0.0009 (12)
N1 0.086 (2) 0.0609 (17) 0.0581 (17) −0.0038 (15) −0.0151 (16) 0.0005 (13)
C1 0.076 (2) 0.062 (2) 0.0493 (19) −0.0098 (18) 0.0071 (17) 0.0004 (15)
C2 0.085 (3) 0.071 (2) 0.051 (2) −0.013 (2) 0.0041 (19) −0.0045 (17)
C3 0.104 (3) 0.089 (3) 0.067 (3) −0.026 (3) 0.005 (2) −0.011 (2)
C4 0.148 (5) 0.080 (3) 0.074 (3) −0.035 (3) 0.017 (3) −0.016 (2)
C5 0.148 (5) 0.058 (2) 0.081 (3) 0.001 (3) 0.024 (3) 0.002 (2)
C6 0.100 (3) 0.065 (2) 0.070 (2) −0.001 (2) 0.008 (2) 0.0031 (19)
C7 0.114 (4) 0.147 (5) 0.109 (4) 0.022 (3) −0.050 (3) −0.021 (3)
C8 0.065 (2) 0.066 (2) 0.064 (2) −0.0021 (17) −0.0099 (18) −0.0009 (16)
C9 0.0517 (19) 0.061 (2) 0.059 (2) −0.0049 (15) −0.0056 (15) 0.0038 (15)
C10 0.0472 (18) 0.0536 (19) 0.065 (2) −0.0073 (15) −0.0069 (15) 0.0057 (15)
C11 0.0432 (17) 0.0570 (19) 0.062 (2) −0.0058 (14) −0.0074 (15) 0.0039 (15)
C12 0.073 (2) 0.062 (2) 0.065 (2) 0.0093 (17) −0.0146 (18) 0.0044 (16)
C13 0.077 (2) 0.078 (2) 0.054 (2) 0.0080 (19) −0.0122 (18) −0.0015 (18)
C14 0.0523 (19) 0.061 (2) 0.068 (2) −0.0029 (16) −0.0025 (17) −0.0043 (16)
C15 0.056 (2) 0.0540 (19) 0.076 (2) −0.0010 (15) −0.0092 (17) 0.0093 (17)
C16 0.0564 (19) 0.058 (2) 0.060 (2) −0.0017 (15) −0.0091 (16) 0.0050 (15)

Geometric parameters (Å, °)

Cl1—C14 1.734 (3) C7—H7C 0.9600
O1—C2 1.371 (4) C8—C9 1.510 (4)
O1—C7 1.428 (5) C8—H8A 0.9700
O2—C10 1.224 (4) C8—H8B 0.9700
N1—C1 1.392 (4) C9—C10 1.491 (4)
N1—C8 1.449 (4) C9—H9A 0.9700
N1—H1 0.9952 C9—H9B 0.9700
C1—C6 1.381 (5) C10—C11 1.501 (5)
C1—C2 1.410 (5) C11—C16 1.382 (4)
C2—C3 1.370 (5) C11—C12 1.389 (5)
C3—C4 1.382 (7) C12—C13 1.381 (5)
C3—H3A 0.9300 C12—H12A 0.9300
C4—C5 1.373 (7) C13—C14 1.377 (5)
C4—H4A 0.9300 C13—H13A 0.9300
C5—C6 1.390 (6) C14—C15 1.371 (5)
C5—H5A 0.9300 C15—C16 1.379 (5)
C6—H6A 0.9300 C15—H15A 0.9300
C7—H7A 0.9600 C16—H16A 0.9300
C7—H7B 0.9600
C2—O1—C7 118.2 (3) N1—C8—H8B 109.9
C1—N1—C8 121.3 (3) C9—C8—H8B 109.9
C1—N1—H1 121.8 H8A—C8—H8B 108.3
C8—N1—H1 112.7 C10—C9—C8 113.9 (3)
C6—C1—N1 123.8 (3) C10—C9—H9A 108.8
C6—C1—C2 118.8 (3) C8—C9—H9A 108.8
N1—C1—C2 117.4 (3) C10—C9—H9B 108.8
C3—C2—O1 125.3 (4) C8—C9—H9B 108.8
C3—C2—C1 120.8 (4) H9A—C9—H9B 107.7
O1—C2—C1 113.9 (3) O2—C10—C9 121.3 (3)
C2—C3—C4 119.7 (4) O2—C10—C11 119.6 (3)
C2—C3—H3A 120.1 C9—C10—C11 119.1 (3)
C4—C3—H3A 120.1 C16—C11—C12 118.6 (3)
C5—C4—C3 120.3 (4) C16—C11—C10 122.5 (3)
C5—C4—H4A 119.9 C12—C11—C10 118.9 (3)
C3—C4—H4A 119.9 C13—C12—C11 120.5 (3)
C4—C5—C6 120.6 (4) C13—C12—H12A 119.7
C4—C5—H5A 119.7 C11—C12—H12A 119.7
C6—C5—H5A 119.7 C14—C13—C12 119.6 (3)
C1—C6—C5 119.9 (4) C14—C13—H13A 120.2
C1—C6—H6A 120.0 C12—C13—H13A 120.2
C5—C6—H6A 120.0 C15—C14—C13 120.8 (3)
O1—C7—H7A 109.5 C15—C14—Cl1 120.1 (3)
O1—C7—H7B 109.5 C13—C14—Cl1 119.1 (3)
H7A—C7—H7B 109.5 C14—C15—C16 119.4 (3)
O1—C7—H7C 109.5 C14—C15—H15A 120.3
H7A—C7—H7C 109.5 C16—C15—H15A 120.3
H7B—C7—H7C 109.5 C15—C16—C11 121.1 (3)
N1—C8—C9 108.9 (3) C15—C16—H16A 119.4
N1—C8—H8A 109.9 C11—C16—H16A 119.4
C9—C8—H8A 109.9

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15A···O2i 0.93 2.49 3.414 (4) 171

Symmetry codes: (i) −x+3/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5773).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Dienys, G., Gureviciene, J., Cekuoliene, L. & Steponavicius, J. (1977). Lietuvus TSR Mokslu akademijos darbai Ser. B, 1, 33–38.
  3. Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan
  4. Peifer, C., Kinkel, K., Abadleh, M., Schollmeyer, D. & Laufer, S. (2007). J. Med. Chem. 50, 1213–1221. [DOI] [PubMed]
  5. Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Volkov, S. V., Kutyakov, S. V., Levov, A. N., Polyakova, E. I., Anh, L. T., Soldatova, S. A., Terentiev, P. B. & Soldatenkov, A. T. (2007). Chem. Heterocycl. Compd, 43, 445–453.
  9. Yamashkin, S. A. & Oreshkina, E. A. (2006). Chem. Heterocycl. Compd, 42, 701–718.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810054449/hb5773sup1.cif

e-67-0o315-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054449/hb5773Isup2.hkl

e-67-0o315-Isup2.hkl (149KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES