Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 12;67(Pt 2):o341–o342. doi: 10.1107/S1600536811000146

2-(4-Methyl­sulfanylphen­yl)-1H-benzimidazol-3-ium bromide

Mohamed Ziaulla a, M N Manjunatha a, Ravish Sankolli b, K R Nagasundara a, Noor Shahina Begum a,*
PMCID: PMC3051663  PMID: 21523024

Abstract

In the cation of the title compound, C14H13N2S+·Br, the essentially planar benzimidazole system (r.m.s. deviation = 0.0082 Å) is substituted with a 4-methyl­sulfanylphenyl ring. The dihedral angle between the benzimidazole system and the 4-methyl­sulfanylphenyl ring is 2.133 (2)°. The crystal structure is characterized by strong and highly directional inter­molecular N—H⋯Br hydrogen bonds involving the bromide ion. Moreover, C—H⋯S inter­actions result in chains of mol­ecules along the c axis. The supra­molecular assembly is further stabilized by π–π stacking inter­actions between the benzimidazole system and 4-methyl­sulfanylphenyl rings [centroid–centroid distance = 3.477 (4) Å].

Related literature

For general background to benzimidazoles and their derivatives, see: Huang & Scarborough (1999); Preston (1974); Zarrinmayeh et al. (1998); Zhu et al. (2000). For related structures, see: Goker et al. (1995); Ozbey et al. (1998); Vasudevan et al. (1994). For hydrogen bonding, see: Bernstein et al. (1995); Nardelli (1983).graphic file with name e-67-0o341-scheme1.jpg

Experimental

Crystal data

  • C14H13N2S+·Br

  • M r = 321.23

  • Monoclinic, Inline graphic

  • a = 5.3289 (2) Å

  • b = 24.0195 (12) Å

  • c = 10.9544 (5) Å

  • β = 100.113 (2)°

  • V = 1380.35 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.11 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.575, T max = 0.636

  • 23823 measured reflections

  • 3009 independent reflections

  • 2273 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.069

  • S = 1.03

  • 3009 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811000146/pb2053sup1.cif

e-67-0o341-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000146/pb2053Isup2.hkl

e-67-0o341-Isup2.hkl (144.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Br1 0.74 (2) 2.51 (2) 3.247 (2) 171 (2)
N2—H2N⋯Br1i 0.77 (3) 2.50 (2) 3.231 (2) 159
C5—H5⋯S1ii 0.97 (3) 2.98 (3) 3.736 (3) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and the Department of Science and Technology (DST), India, for the data collection facility under the IRHPA–DST program. MNM thanks the M. S. Ramaiah Institute of Technology, Bangalore, for their support and encouragement.

supplementary crystallographic information

Comment

Benzimidazoles and their derivatives exhibit a number of important pharmacological properties, such as antihistaminic, anti-ulcerative, antiallergic, and antipyretic. In addition, benzimidazole derivatives are effective against the human cytomegalo virus (HCMV) (Zhu et al., 2000) and are also efficient selective neuropeptide Y Y1 receptor antagonists (Zarrinmayeh et al., 1998). Most of the described methods for the synthesisof benzimidazoles make use of volatile organic solvents and involve solid-phase synthesis via o-nitroanilines (Preston et al., 1974; Huang et al., 1999) or the condensation of o-phenylenediamines with carboxylic acid derivatives, aldehydes and aryl halides. In the title compound, there is one benzimidazole thiomethyl phenyl cation and one Br- anion in the asymmetric unit. The expected proton transfer from HBr to benzimidazole thiomethyl phenyl occurs at atom N1 of the benzimidazole ring. Consequently,atom N1 shows quaternary character and bears a positive charge. In the molecule, the benzimidazole and thiomethyl phenyl rings are planar inclined at an dihedral angle 2.133 (2)° between them. The molecular structure is primarily stabilized by strong intramolecular N—H···Br hydrogen bond. The bond lengths and angles for the benzimidazole moiety of the molecule are in good agreement, within experimental errors, with those observed in other benzimidazole derivatives (Goker et al., 1995; Ozbey et al., 1998; Vasudevan et al.,1994).Further, the crystal structure is stabilized by intermolecular interactions into three dimensional framework structure by the combination of C—H···S and N—H···Br. The C—H···S and N—H···Br interactions together generates tetramers linking the molecules into chain like pattern along crystallographic c-axis. Additionally,the supramolecular assembly is further stabilized by π-π-stacking interactions between the benzimidazole and thiomethyl phenyl rings. The C3—C10 (x, 0.5 - y, 1/2 + z) disposed at a distance of 3.477 (4) Å.

Experimental

A ethanol solution (20 ml) of zinc bromide (2.25 mg, 1.0 mmol) was treated with 2-(p-thiomethylphenyl)benzimidazole (4.80 mg, 2.0 mmol) in ethanol (20 ml). The mixture was then treated with 48% HBr (2–3 ml) followed by liquid Br2 (2–3 ml). The mixture was refluxed for 6 hrs on a steam bath filtered and allowed to stand at room temperature for two days. Coloured crystals separated and these were washed with ethanol and dried. (yield 4.00 mg; 83%).

Figures

Fig. 1.

Fig. 1.

ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.

Crystal data

C14H13N2S+·Br F(000) = 648
Mr = 321.23 Dx = 1.546 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3009 reflections
a = 5.3289 (2) Å θ = 1.7–27.0°
b = 24.0195 (12) Å µ = 3.11 mm1
c = 10.9544 (5) Å T = 296 K
β = 100.113 (2)° Block, yellow
V = 1380.35 (11) Å3 0.20 × 0.18 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEX CCD detector diffractometer 3009 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2273 reflections with I > 2σ(I)
graphite Rint = 0.039
ω scans θmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan Bruker Kappa APEX h = −6→6
Tmin = 0.575, Tmax = 0.636 k = −30→30
23823 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.3109P] where P = (Fo2 + 2Fc2)/3
3009 reflections (Δ/σ)max = 0.001
215 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.27225 (4) 0.295277 (10) 0.33608 (2) 0.04982 (10)
S1 0.57379 (16) −0.00128 (3) 0.21720 (8) 0.0710 (2)
N1 0.6485 (4) 0.28057 (8) 0.13508 (19) 0.0421 (5)
N2 0.9186 (4) 0.25577 (8) 0.01982 (17) 0.0408 (4)
C1 0.9109 (4) 0.31328 (10) 0.0161 (2) 0.0415 (5)
C2 1.0437 (5) 0.35189 (11) −0.0424 (2) 0.0555 (6)
C3 0.9910 (6) 0.40696 (12) −0.0233 (3) 0.0644 (7)
C4 0.8149 (6) 0.42307 (12) 0.0504 (3) 0.0659 (8)
C5 0.6847 (5) 0.38481 (11) 0.1084 (3) 0.0555 (6)
C6 0.7381 (4) 0.32913 (10) 0.0906 (2) 0.0430 (5)
C7 0.7610 (4) 0.23676 (9) 0.09243 (19) 0.0387 (5)
C8 0.7198 (4) 0.17861 (9) 0.1213 (2) 0.0391 (5)
C9 0.5449 (5) 0.16389 (11) 0.1960 (2) 0.0516 (6)
C10 0.5058 (5) 0.10930 (11) 0.2220 (2) 0.0558 (6)
C11 0.6392 (5) 0.06710 (10) 0.1762 (2) 0.0453 (5)
C12 0.8139 (6) 0.08164 (11) 0.1013 (3) 0.0586 (7)
C13 0.8530 (5) 0.13648 (11) 0.0746 (3) 0.0548 (7)
C14 0.7734 (8) −0.04379 (14) 0.1398 (4) 0.0721 (9)
H1N 0.562 (5) 0.2802 (10) 0.181 (2) 0.042 (7)*
H9 0.464 (5) 0.1907 (12) 0.233 (2) 0.062 (8)*
H2N 0.991 (5) 0.2357 (11) −0.017 (2) 0.049 (8)*
H12 0.909 (5) 0.0539 (11) 0.070 (2) 0.065 (8)*
H14C 0.736 (6) −0.0776 (16) 0.159 (3) 0.086 (11)*
H14B 0.947 (7) −0.0359 (13) 0.169 (3) 0.090 (11)*
H5 0.567 (5) 0.3946 (12) 0.163 (2) 0.075 (9)*
H4 0.781 (6) 0.4619 (13) 0.063 (3) 0.085 (10)*
H2 1.159 (5) 0.3398 (11) −0.092 (2) 0.058 (7)*
H13 0.975 (5) 0.1462 (12) 0.022 (3) 0.079 (9)*
H10 0.389 (5) 0.0996 (11) 0.276 (2) 0.064 (7)*
H3 1.080 (5) 0.4350 (12) −0.060 (2) 0.070 (8)*
H14A 0.736 (6) −0.0374 (14) 0.054 (3) 0.097 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.05371 (15) 0.05390 (17) 0.04775 (15) 0.00057 (11) 0.02515 (10) 0.00017 (11)
S1 0.0965 (6) 0.0390 (4) 0.0891 (5) −0.0055 (3) 0.0480 (4) 0.0060 (3)
N1 0.0446 (11) 0.0397 (11) 0.0476 (11) −0.0021 (8) 0.0233 (9) −0.0012 (9)
N2 0.0441 (10) 0.0396 (11) 0.0436 (11) −0.0006 (9) 0.0212 (9) −0.0029 (9)
C1 0.0442 (12) 0.0399 (12) 0.0414 (12) −0.0043 (10) 0.0105 (10) −0.0003 (10)
C2 0.0593 (16) 0.0521 (16) 0.0598 (15) −0.0093 (12) 0.0233 (13) 0.0045 (13)
C3 0.0741 (19) 0.0474 (16) 0.0755 (18) −0.0129 (14) 0.0231 (15) 0.0080 (14)
C4 0.077 (2) 0.0386 (16) 0.082 (2) −0.0056 (13) 0.0140 (16) −0.0001 (14)
C5 0.0626 (16) 0.0411 (15) 0.0655 (16) 0.0024 (12) 0.0185 (13) −0.0077 (13)
C6 0.0433 (12) 0.0414 (13) 0.0450 (12) −0.0031 (10) 0.0099 (9) −0.0011 (10)
C7 0.0380 (11) 0.0407 (13) 0.0392 (11) −0.0013 (10) 0.0121 (9) 0.0001 (10)
C8 0.0400 (12) 0.0394 (13) 0.0392 (11) −0.0015 (10) 0.0109 (9) 0.0009 (10)
C9 0.0621 (16) 0.0380 (13) 0.0626 (15) 0.0046 (11) 0.0331 (13) 0.0005 (12)
C10 0.0620 (16) 0.0484 (15) 0.0665 (16) −0.0018 (12) 0.0377 (13) 0.0054 (13)
C11 0.0512 (13) 0.0386 (13) 0.0483 (13) −0.0036 (10) 0.0147 (10) 0.0016 (10)
C12 0.0705 (18) 0.0389 (15) 0.0762 (18) 0.0019 (12) 0.0400 (15) −0.0019 (13)
C13 0.0615 (16) 0.0436 (15) 0.0689 (16) 0.0011 (12) 0.0377 (14) −0.0004 (12)
C14 0.091 (3) 0.0407 (18) 0.089 (3) 0.0024 (16) 0.028 (2) −0.0003 (16)

Geometric parameters (Å, °)

S1—C11 1.754 (2) C5—C6 1.388 (3)
S1—C14 1.791 (4) C5—H5 0.97 (3)
N1—C7 1.335 (3) C7—C8 1.457 (3)
N1—C6 1.381 (3) C8—C13 1.384 (3)
N1—H1N 0.74 (3) C8—C9 1.390 (3)
N2—C7 1.334 (3) C9—C10 1.365 (4)
N2—C1 1.382 (3) C9—H9 0.91 (3)
N2—H2N 0.77 (3) C10—C11 1.382 (3)
C1—C6 1.386 (3) C10—H10 0.96 (3)
C1—C2 1.390 (3) C11—C12 1.389 (3)
C2—C3 1.376 (4) C12—C13 1.373 (4)
C2—H2 0.93 (3) C12—H12 0.94 (3)
C3—C4 1.395 (4) C13—H13 0.97 (3)
C3—H3 0.95 (3) C14—H14C 0.87 (4)
C4—C5 1.373 (4) C14—H14B 0.94 (3)
C4—H4 0.96 (3) C14—H14A 0.94 (3)
C11—S1—C14 104.57 (15) N2—C7—C8 126.29 (19)
C7—N1—C6 109.73 (19) N1—C7—C8 125.82 (18)
C7—N1—H1N 127.0 (19) C13—C8—C9 118.2 (2)
C6—N1—H1N 123.0 (19) C13—C8—C7 120.93 (19)
C7—N2—C1 109.94 (18) C9—C8—C7 120.9 (2)
C7—N2—H2N 121.6 (19) C10—C9—C8 120.6 (2)
C1—N2—H2N 128.3 (19) C10—C9—H9 118.9 (17)
N2—C1—C6 106.04 (19) C8—C9—H9 120.3 (17)
N2—C1—C2 131.7 (2) C9—C10—C11 121.5 (2)
C6—C1—C2 122.2 (2) C9—C10—H10 120.0 (16)
C3—C2—C1 115.9 (3) C11—C10—H10 118.4 (16)
C3—C2—H2 124.1 (16) C10—C11—C12 118.1 (2)
C1—C2—H2 120.0 (16) C10—C11—S1 117.15 (18)
C2—C3—C4 122.1 (3) C12—C11—S1 124.79 (19)
C2—C3—H3 119.2 (17) C13—C12—C11 120.6 (2)
C4—C3—H3 118.7 (17) C13—C12—H12 119.2 (17)
C5—C4—C3 121.9 (3) C11—C12—H12 120.2 (17)
C5—C4—H4 117.2 (19) C12—C13—C8 121.1 (2)
C3—C4—H4 121.0 (19) C12—C13—H13 120.1 (17)
C4—C5—C6 116.5 (3) C8—C13—H13 118.9 (18)
C4—C5—H5 123.9 (18) S1—C14—H14C 104 (2)
C6—C5—H5 119.5 (18) S1—C14—H14B 111 (2)
N1—C6—C1 106.4 (2) H14C—C14—H14B 111 (3)
N1—C6—C5 132.2 (2) S1—C14—H14A 110 (2)
C1—C6—C5 121.4 (2) H14C—C14—H14A 112 (3)
N2—C7—N1 107.9 (2) H14B—C14—H14A 109 (3)
C7—N2—C1—C6 −0.2 (3) C6—N1—C7—C8 178.60 (19)
C7—N2—C1—C2 177.8 (3) N2—C7—C8—C13 1.4 (3)
N2—C1—C2—C3 −178.5 (2) N1—C7—C8—C13 −178.0 (2)
C6—C1—C2—C3 −0.8 (4) N2—C7—C8—C9 −178.3 (2)
C1—C2—C3—C4 0.0 (4) N1—C7—C8—C9 2.2 (3)
C2—C3—C4—C5 0.3 (5) C13—C8—C9—C10 −0.2 (4)
C3—C4—C5—C6 0.3 (4) C7—C8—C9—C10 179.5 (2)
C7—N1—C6—C1 0.8 (3) C8—C9—C10—C11 0.6 (4)
C7—N1—C6—C5 −179.2 (3) C9—C10—C11—C12 −0.7 (4)
N2—C1—C6—N1 −0.4 (2) C9—C10—C11—S1 179.5 (2)
C2—C1—C6—N1 −178.6 (2) C14—S1—C11—C10 178.8 (2)
N2—C1—C6—C5 179.6 (2) C14—S1—C11—C12 −1.0 (3)
C2—C1—C6—C5 1.4 (4) C10—C11—C12—C13 0.4 (4)
C4—C5—C6—N1 178.9 (3) S1—C11—C12—C13 −179.8 (2)
C4—C5—C6—C1 −1.1 (4) C11—C12—C13—C8 −0.1 (5)
C1—N2—C7—N1 0.7 (3) C9—C8—C13—C12 −0.1 (4)
C1—N2—C7—C8 −178.83 (19) C7—C8—C13—C12 −179.8 (2)
C6—N1—C7—N2 −0.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···Br1 0.74 (2) 2.51 (2) 3.247 (2) 171 (2)
N2—H2N···Br1i 0.77 (3) 2.50 (2) 3.231 (2) 159
C5—H5···S1ii 0.97 (3) 2.98 (3) 3.736 (3) 135

Symmetry codes: (i) x+1, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2053).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. 34, 1555–1573.
  2. Bruker (1998). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconcin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Goker, H., Olgen, S., Ertan, R., Akgiin, H., Ozbey, S., Kendi, E. & Topcu, G. (1995). J. Heterocycl. Chem. 32, 1767–1773.
  6. Huang, W. & Scarborough, R. M. (1999). Tetrahedron Lett. 40, 2665–2668.
  7. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  8. Ozbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23–30.
  9. Preston, P. N. (1974). Chem. Rev. 74, 279–314.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Vasudevan, K. T., Puttaraja, & Kulkarni, M. V. (1994). Acta Cryst. C50, 1286–1288.
  12. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.
  13. Zarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709–2719. [DOI] [PubMed]
  14. Zhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430–2437. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811000146/pb2053sup1.cif

e-67-0o341-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000146/pb2053Isup2.hkl

e-67-0o341-Isup2.hkl (144.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES