Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 8;67(Pt 2):o242. doi: 10.1107/S1600536810052797

(E)-2-(4-Methylbenzylidene)hydrazinecarboxamide

Yalda Kia a, Hasnah Osman a, Vikneswaran al Murugaiyah b, Madhukar Hemamalini c, Hoong-Kun Fun c,*,
PMCID: PMC3051666  PMID: 21522936

Abstract

The title compound, C9H11N3O, was synthesized by the reaction of 4-methyl­benzaldehyde with semicarbazide. The mol­ecule adopts an E configuration about the central C=N double bond and the dihedral angle between the mean planes of the benzene ring and the carboxamide groups is 17.05 (9)°. The hydrazine N atoms are twisted slightly out of the plane of the carboxamide group [C—C—N—N torsion angle = 178.39 (14)°] and an intra­molecular N—H⋯N bond generates an S(5) ring. In the crystal, adjacent mol­ecules are connected via a pair of N—H⋯O hydrogen bonds, generating R 2 2(8) loops, resulting in supra­molecular [001] ribbons.

Related literature

For applications of Schiff bases, see: Dhar et al. (1982); Przybylski et al. (2009); Bringmann et al. (2004); De Souza et al. (2007); Guo et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-0o242-scheme1.jpg

Experimental

Crystal data

  • C9H11N3O

  • M r = 177.21

  • Monoclinic, Inline graphic

  • a = 17.2186 (13) Å

  • b = 4.5304 (3) Å

  • c = 11.9846 (9) Å

  • β = 93.348 (3)°

  • V = 933.29 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.76 × 0.23 × 0.05 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.937, T max = 0.996

  • 6322 measured reflections

  • 1833 independent reflections

  • 1285 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.149

  • S = 1.09

  • 1833 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810052797/hb5772sup1.cif

e-67-0o242-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052797/hb5772Isup2.hkl

e-67-0o242-Isup2.hkl (88.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.928 (18) 1.998 (18) 2.9260 (19) 177.7 (17)
N3—H2N3⋯N1 0.93 (2) 2.22 (2) 2.667 (2) 108.6 (16)
N3—H1N3⋯O1ii 0.97 (2) 1.97 (2) 2.9106 (19) 163.5 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

YK, HO and VM thank the Malaysian Government and Universiti Sains Malaysia for the research University grant No. 1001/PKIMIA/811133. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Schiff bases are formed from the reaction of a primary amine with aldehydes or ketones. They exhibit interesting biological activities, such as antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral and antipyretic properties (Dhar et al., 1982; Przybylski et al., 2009). The Imine functional group present in these compounds is responsible for their vast biological activities. In addition, Schiff bases are also employed as intermediates in the total synthesis of bioactive natural products (Bringmann et al., 2004; De Souza et al., 2007; Guo et al., 2007).

The asymmetric unit of the title compound is shown in Fig. 1. The molecule adopts an E configuration about the central C═N double bond. The dihedral angle between the mean planes of the benzene (C1–C6) ring and carboxamide (N1–N3/O1/C8) group is 17.05 (9)°. The hydrazine N atoms are twisted slightly out of the plane of the carboxamide group [C6-C7-N1-N2 torsion angle = 178.39 (14)°].

In the crystal packing (Fig. 2), the adjacent molecules are connected via pair of N—H···O hydrogen bonds, generating an R22(8) ring motifs, resulting in supramolecular ribbons along the c-axis.

Experimental

A mixture of 4-methylbenzaldehyde (0.1 g, 0.83 mmol) and semicarbazide (0.062 g, 0.83 mmol) was dissolved in ethanol (5.0 ml) and water (1.0 ml) which was then refluxed in the presence of sodium hydroxide (0.25M) for 3-4 hours. After completion of the reaction (through TLC monitoring), the mixture was poured into ice. The precipitate which was formed was filtered and washed with water. The pure solid was then recrystallised from ethanol to afford the title compound as colourless plates.

Refinement

Atoms H1N2 and H1N3 were located from a difference Fourier map and refined freely [N–H = 0.93 (2)–0.97 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A supramolecular ribbon generated by N—H···O hydrogen bonds.

Crystal data

C9H11N3O F(000) = 376
Mr = 177.21 Dx = 1.261 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1533 reflections
a = 17.2186 (13) Å θ = 3.4–22.6°
b = 4.5304 (3) Å µ = 0.09 mm1
c = 11.9846 (9) Å T = 296 K
β = 93.348 (3)° Plate, colourless
V = 933.29 (12) Å3 0.76 × 0.23 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 1833 independent reflections
Radiation source: fine-focus sealed tube 1285 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −21→20
Tmin = 0.937, Tmax = 0.996 k = −5→5
6322 measured reflections l = −14→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0825P)2 + 0.0212P] where P = (Fo2 + 2Fc2)/3
1833 reflections (Δ/σ)max < 0.001
131 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.50913 (6) 0.2012 (3) 0.63337 (10) 0.0540 (4)
N1 0.34815 (7) 0.3857 (3) 0.45522 (11) 0.0487 (4)
N2 0.41216 (8) 0.2357 (3) 0.49998 (12) 0.0505 (4)
H1N2 0.4366 (10) 0.093 (4) 0.4589 (16) 0.067 (6)*
N3 0.42019 (9) 0.5689 (3) 0.64575 (12) 0.0530 (4)
H2N3 0.3792 (10) 0.660 (5) 0.6044 (18) 0.076 (6)*
H1N3 0.4490 (10) 0.643 (4) 0.7121 (19) 0.072 (6)*
C1 0.20643 (10) 0.6318 (5) 0.35353 (17) 0.0676 (6)
H1A 0.2179 0.6835 0.4278 0.081*
C2 0.14128 (11) 0.7477 (5) 0.2966 (2) 0.0769 (7)
H2A 0.1093 0.8755 0.3337 0.092*
C3 0.12229 (11) 0.6785 (5) 0.18552 (18) 0.0663 (6)
C4 0.17074 (11) 0.4889 (5) 0.13342 (15) 0.0671 (6)
H4A 0.1595 0.4394 0.0589 0.081*
C5 0.23599 (10) 0.3697 (5) 0.18930 (15) 0.0647 (6)
H5A 0.2677 0.2417 0.1519 0.078*
C6 0.25475 (9) 0.4387 (4) 0.30032 (13) 0.0520 (5)
C7 0.32332 (10) 0.3054 (4) 0.35755 (14) 0.0531 (5)
H7A 0.3497 0.1574 0.3216 0.064*
C8 0.44997 (9) 0.3340 (4) 0.59601 (13) 0.0443 (4)
C9 0.05146 (12) 0.8111 (6) 0.1244 (2) 0.0941 (8)
H9A 0.0215 0.6574 0.0873 0.141*
H9B 0.0676 0.9508 0.0702 0.141*
H9C 0.0202 0.9092 0.1769 0.141*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0579 (7) 0.0596 (8) 0.0426 (7) 0.0045 (6) −0.0143 (6) 0.0028 (5)
N1 0.0481 (8) 0.0571 (9) 0.0396 (8) 0.0016 (6) −0.0072 (6) 0.0002 (6)
N2 0.0525 (8) 0.0584 (9) 0.0388 (8) 0.0084 (7) −0.0125 (6) −0.0024 (7)
N3 0.0623 (9) 0.0541 (9) 0.0410 (8) 0.0013 (7) −0.0105 (7) −0.0040 (7)
C1 0.0656 (11) 0.0847 (14) 0.0503 (11) 0.0149 (10) −0.0135 (9) −0.0105 (10)
C2 0.0643 (12) 0.0895 (15) 0.0749 (15) 0.0209 (11) −0.0122 (11) −0.0104 (12)
C3 0.0569 (11) 0.0752 (13) 0.0642 (12) −0.0046 (10) −0.0192 (10) 0.0128 (10)
C4 0.0674 (11) 0.0875 (14) 0.0443 (10) −0.0055 (11) −0.0160 (9) 0.0042 (10)
C5 0.0612 (11) 0.0872 (14) 0.0445 (10) 0.0076 (10) −0.0080 (8) −0.0041 (10)
C6 0.0497 (9) 0.0642 (11) 0.0412 (9) −0.0002 (8) −0.0056 (7) 0.0008 (8)
C7 0.0523 (9) 0.0656 (11) 0.0405 (9) 0.0088 (8) −0.0050 (8) −0.0040 (8)
C8 0.0491 (9) 0.0485 (10) 0.0343 (8) −0.0080 (7) −0.0058 (7) 0.0078 (7)
C9 0.0724 (14) 0.1056 (18) 0.100 (2) 0.0093 (13) −0.0354 (13) 0.0148 (15)

Geometric parameters (Å, °)

O1—C8 1.2436 (18) C2—H2A 0.9300
N1—C7 1.275 (2) C3—C4 1.373 (3)
N1—N2 1.3766 (18) C3—C9 1.510 (2)
N2—C8 1.363 (2) C4—C5 1.384 (2)
N2—H1N2 0.93 (2) C4—H4A 0.9300
N3—C8 1.337 (2) C5—C6 1.386 (2)
N3—H2N3 0.935 (19) C5—H5A 0.9300
N3—H1N3 0.97 (2) C6—C7 1.461 (2)
C1—C2 1.382 (2) C7—H7A 0.9300
C1—C6 1.388 (3) C9—H9A 0.9600
C1—H1A 0.9300 C9—H9B 0.9600
C2—C3 1.388 (3) C9—H9C 0.9600
C7—N1—N2 115.78 (15) C4—C5—C6 120.91 (19)
C8—N2—N1 119.98 (15) C4—C5—H5A 119.5
C8—N2—H1N2 117.8 (11) C6—C5—H5A 119.5
N1—N2—H1N2 120.9 (11) C5—C6—C1 118.08 (16)
C8—N3—H2N3 114.4 (13) C5—C6—C7 119.61 (17)
C8—N3—H1N3 116.6 (11) C1—C6—C7 122.30 (15)
H2N3—N3—H1N3 127.9 (19) N1—C7—C6 122.12 (16)
C2—C1—C6 120.24 (18) N1—C7—H7A 118.9
C2—C1—H1A 119.9 C6—C7—H7A 118.9
C6—C1—H1A 119.9 O1—C8—N3 123.50 (15)
C1—C2—C3 121.8 (2) O1—C8—N2 119.12 (16)
C1—C2—H2A 119.1 N3—C8—N2 117.37 (15)
C3—C2—H2A 119.1 C3—C9—H9A 109.5
C4—C3—C2 117.53 (17) C3—C9—H9B 109.5
C4—C3—C9 121.5 (2) H9A—C9—H9B 109.5
C2—C3—C9 120.9 (2) C3—C9—H9C 109.5
C3—C4—C5 121.45 (18) H9A—C9—H9C 109.5
C3—C4—H4A 119.3 H9B—C9—H9C 109.5
C5—C4—H4A 119.3
C7—N1—N2—C8 170.10 (15) C4—C5—C6—C7 178.99 (16)
C6—C1—C2—C3 −0.6 (3) C2—C1—C6—C5 0.7 (3)
C1—C2—C3—C4 0.1 (3) C2—C1—C6—C7 −178.66 (19)
C1—C2—C3—C9 −179.11 (19) N2—N1—C7—C6 178.39 (14)
C2—C3—C4—C5 0.2 (3) C5—C6—C7—N1 171.99 (17)
C9—C3—C4—C5 179.42 (19) C1—C6—C7—N1 −8.7 (3)
C3—C4—C5—C6 −0.1 (3) N1—N2—C8—O1 −177.76 (13)
C4—C5—C6—C1 −0.4 (3) N1—N2—C8—N3 3.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1i 0.928 (18) 1.998 (18) 2.9260 (19) 177.7 (17)
N3—H2N3···N1 0.93 (2) 2.22 (2) 2.667 (2) 108.6 (16)
N3—H1N3···O1ii 0.97 (2) 1.97 (2) 2.9106 (19) 163.5 (17)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5772).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bringmann, G., Dreyer, M., Faber, J. H., Dalsgaard, P. W., Staerk, D. & Jaroszewski, J. W. (2004). J. Nat. Prod. 67, 743–748. [DOI] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. De Souza, A. O., Galetti, F. C. S., Silva, C. L., Bicalho, B. & Fonseca, S. F. (2007). Quim. Nova, 30, 1563–1566.
  5. Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.
  6. Guo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X. & Wang, L. (2007). Carbohydr. Res. 342, 1329–1332. [DOI] [PubMed]
  7. Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810052797/hb5772sup1.cif

e-67-0o242-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052797/hb5772Isup2.hkl

e-67-0o242-Isup2.hkl (88.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES