Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 8;67(Pt 2):o306. doi: 10.1107/S1600536810054085

1,2-Bis(2-meth­oxy-6-formyl­phen­oxy)ethane

Hongqi Li a,*, Li Cai a, Dongling Chen a, Jinxing Li a, Yijun Chen a
PMCID: PMC3051670  PMID: 21522995

Abstract

In the title compound [systematic name: 3,3′-dimethoxy-2,2′-(ethane-1,2-diyldioxy)dibenzaldehyde], C18H18O6, prepared from 1,2-dibromo­ethane and ortho-vanillin in the presence of sodium carbonate, the two vanillin units are linked via a CH2–CH2 bridge. The two benzene rings are inclined at a dihedral angle of 41.6 (5)°.

Related literature

For the use of open chain-ionophores, including polyethyl­ene glycols, as microbiological agents and in ion binding, see: Valeur et al. (1992); Tuncer & Erk (2000). For the synthesis, see: Tuncer & Erk (2000). For related structures, see: Higham et al. (2010).graphic file with name e-67-0o306-scheme1.jpg

Experimental

Crystal data

  • C18H18O6

  • M r = 330.32

  • Monoclinic, Inline graphic

  • a = 4.161 (3) Å

  • b = 30.155 (18) Å

  • c = 12.934 (8) Å

  • β = 96.817 (7)°

  • V = 1611.6 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.988, T max = 0.992

  • 14774 measured reflections

  • 2815 independent reflections

  • 1519 reflections with I > 2σ(I)

  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.141

  • S = 1.00

  • 2815 reflections

  • 220 parameters

  • H-atom parameters not refined

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810054085/sj5080sup1.cif

e-67-0o306-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054085/sj5080Isup2.hkl

e-67-0o306-Isup2.hkl (138.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support of the project by the Shanghai Natural Science Foundation (No. 06ZR14001) is acknowledged.

supplementary crystallographic information

Comment

Open chain ionophores including polyethylene glycols have proved to be extremely interesting compounds due to their versatility as microbiological agents and in ion binding (Valeur et al., 1992). Their extraordinary capacity for ion binding has attracted much attention in view of their acyclic and bulky structures. For example, aromatic carbonyl derivatives of glycols such as 1,2-bis(2-methoxy-6- formylphenoxy)ethane were investigated to determine the role of sodium ions using steady state fluorescence spectroscopy (Tuncer & Erk, 2000). 1,2-Bis(2-methoxy-6-formylphenoxy)ethane and its analogues have also been used in the synthesis of dienone-ether macrocycles displaying molecular and supramolecular diversity (Higham et al., 2010). Herein we present the single-crystal structure of the title compound.

Experimental

The title compound was prepared as reported in the literature (Tuncer & Erk, 2000). Single crystals suitable for X-ray diffraction measurement was obtained by slow evaporation of the solution in acetone [m.p. 391–393 K; literature value: 392 K (Tuncer & Erk, 2000)].

Refinement

All H atoms were placed at calculated positions and refined using a riding model approximation, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) for aromatic and CH2 groups and = 1.5Ueq(C) for methyl groups.

Figures

Fig. 1.

Fig. 1.

A view of the molecule of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Crystal data

C18H18O6 F(000) = 696
Mr = 330.32 Dx = 1.361 Mg m3
Monoclinic, P21/n Melting point = 391–393 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 4.161 (3) Å Cell parameters from 1432 reflections
b = 30.155 (18) Å θ = 2.6–19.0°
c = 12.934 (8) Å µ = 0.10 mm1
β = 96.817 (7)° T = 296 K
V = 1611.6 (17) Å3 Block, colorless
Z = 4 0.12 × 0.10 × 0.08 mm

Data collection

Bruker APEXII CCD diffractometer 2815 independent reflections
Radiation source: fine-focus sealed tube 1519 reflections with I > 2σ(I)
graphite Rint = 0.096
φ and ω scans θmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −4→4
Tmin = 0.988, Tmax = 0.992 k = −35→35
14774 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060 H-atom parameters not refined
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.059P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
2815 reflections Δρmax = 0.18 e Å3
220 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0130 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3389 (9) 0.03026 (11) 0.5936 (2) 0.0647 (10)
H1A 0.5683 0.0344 0.5956 0.097*
H1B 0.2895 −0.0008 0.5895 0.097*
H1C 0.2676 0.0424 0.6556 0.097*
C2 0.2236 (7) 0.09709 (10) 0.4969 (2) 0.0448 (8)
C3 0.4057 (8) 0.12260 (11) 0.5701 (2) 0.0554 (9)
H3 0.5160 0.1092 0.6286 0.066*
C4 0.4264 (8) 0.16785 (12) 0.5577 (3) 0.0622 (10)
H4 0.5543 0.1845 0.6071 0.075*
C5 0.2608 (8) 0.18851 (11) 0.4733 (3) 0.0547 (9)
H5 0.2717 0.2192 0.4666 0.066*
C6 0.0754 (7) 0.16342 (10) 0.3975 (2) 0.0453 (8)
C7 0.0586 (7) 0.11786 (10) 0.4081 (2) 0.0420 (8)
C8 −0.1070 (8) 0.18701 (12) 0.3090 (3) 0.0612 (10)
H8 −0.2209 0.1703 0.2564 0.073*
C9 0.0325 (8) 0.06410 (9) 0.2724 (2) 0.0461 (8)
H9A −0.1130 0.0407 0.2449 0.055*
H9B 0.2118 0.0504 0.3156 0.055*
C10 0.1595 (7) 0.08728 (10) 0.1841 (2) 0.0438 (8)
H10A 0.2860 0.1129 0.2094 0.053*
H10B 0.2979 0.0675 0.1501 0.053*
C11 −0.0342 (7) 0.11450 (10) 0.0157 (2) 0.0440 (8)
C12 0.1182 (8) 0.15543 (11) 0.0050 (3) 0.0532 (9)
C13 0.1759 (9) 0.16920 (13) −0.0933 (3) 0.0714 (11)
H13 0.2742 0.1965 −0.1016 0.086*
C14 0.0882 (11) 0.14262 (16) −0.1793 (3) 0.0814 (13)
H14 0.1269 0.1523 −0.2450 0.098*
C15 −0.0523 (10) 0.10304 (14) −0.1689 (3) 0.0747 (12)
H15 −0.1064 0.0854 −0.2274 0.090*
C16 −0.1190 (8) 0.08786 (11) −0.0705 (2) 0.0526 (9)
C17 −0.2777 (9) 0.04495 (12) −0.0610 (3) 0.0703 (11)
H17 −0.3183 0.0360 0.0050 0.084*
C18 0.3642 (9) 0.21970 (10) 0.0892 (3) 0.0809 (12)
H18A 0.5724 0.2134 0.0677 0.121*
H18B 0.3920 0.2335 0.1565 0.121*
H18C 0.2469 0.2393 0.0398 0.121*
O1 −0.1379 (5) 0.09317 (6) 0.33650 (14) 0.0448 (6)
O2 −0.1126 (5) 0.10109 (6) 0.11105 (14) 0.0446 (6)
O3 0.1872 (6) 0.17924 (7) 0.09468 (19) 0.0640 (7)
O4 0.1771 (5) 0.05236 (7) 0.50439 (15) 0.0560 (6)
O5 −0.1154 (7) 0.22701 (8) 0.30153 (19) 0.0849 (9)
O6 −0.3593 (8) 0.02042 (9) −0.1333 (2) 0.1053 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.080 (3) 0.067 (2) 0.045 (2) 0.001 (2) −0.0003 (19) 0.0127 (18)
C2 0.052 (2) 0.045 (2) 0.0370 (18) −0.0069 (17) 0.0063 (15) −0.0016 (16)
C3 0.059 (2) 0.066 (2) 0.039 (2) −0.0036 (19) −0.0018 (17) −0.0019 (18)
C4 0.069 (3) 0.067 (3) 0.050 (2) −0.018 (2) 0.0009 (19) −0.0127 (19)
C5 0.060 (2) 0.047 (2) 0.058 (2) −0.0068 (17) 0.0130 (19) −0.0113 (18)
C6 0.050 (2) 0.044 (2) 0.043 (2) 0.0017 (16) 0.0124 (16) −0.0041 (16)
C7 0.0433 (19) 0.050 (2) 0.0340 (18) −0.0050 (16) 0.0084 (15) −0.0083 (16)
C8 0.068 (2) 0.061 (3) 0.056 (2) 0.013 (2) 0.0077 (19) −0.0067 (19)
C9 0.061 (2) 0.0381 (18) 0.0395 (18) 0.0023 (16) 0.0051 (16) 0.0010 (14)
C10 0.0451 (19) 0.0461 (19) 0.0399 (18) 0.0039 (15) 0.0038 (15) 0.0001 (15)
C11 0.0456 (19) 0.049 (2) 0.0382 (19) 0.0093 (16) 0.0081 (15) 0.0059 (16)
C12 0.053 (2) 0.055 (2) 0.053 (2) 0.0084 (18) 0.0105 (18) 0.0120 (18)
C13 0.070 (3) 0.072 (3) 0.076 (3) 0.010 (2) 0.024 (2) 0.032 (2)
C14 0.093 (3) 0.108 (4) 0.046 (3) 0.025 (3) 0.023 (2) 0.027 (3)
C15 0.088 (3) 0.094 (3) 0.042 (2) 0.026 (3) 0.006 (2) 0.001 (2)
C16 0.057 (2) 0.061 (2) 0.0390 (19) 0.0138 (18) 0.0035 (16) 0.0029 (18)
C17 0.082 (3) 0.062 (3) 0.064 (3) 0.008 (2) −0.002 (2) −0.014 (2)
C18 0.069 (3) 0.046 (2) 0.123 (3) −0.009 (2) −0.006 (2) 0.024 (2)
O1 0.0467 (13) 0.0490 (13) 0.0387 (12) −0.0020 (11) 0.0051 (10) −0.0055 (10)
O2 0.0433 (12) 0.0535 (14) 0.0371 (12) 0.0007 (10) 0.0055 (10) 0.0064 (10)
O3 0.0704 (16) 0.0468 (14) 0.0756 (18) −0.0126 (12) 0.0120 (13) 0.0075 (13)
O4 0.0708 (16) 0.0526 (15) 0.0419 (13) −0.0078 (12) −0.0044 (11) 0.0059 (10)
O5 0.122 (2) 0.0432 (16) 0.086 (2) 0.0179 (15) −0.0016 (16) −0.0016 (13)
O6 0.138 (3) 0.083 (2) 0.089 (2) 0.0013 (18) −0.012 (2) −0.0349 (17)

Geometric parameters (Å, °)

C1—O4 1.430 (3) C10—O2 1.447 (3)
C1—H1A 0.9600 C10—H10A 0.9700
C1—H1B 0.9600 C10—H10B 0.9700
C1—H1C 0.9600 C11—O2 1.373 (3)
C2—O4 1.368 (4) C11—C16 1.385 (4)
C2—C3 1.376 (4) C11—C12 1.402 (4)
C2—C7 1.413 (4) C12—O3 1.366 (4)
C3—C4 1.378 (4) C12—C13 1.385 (4)
C3—H3 0.9300 C13—C14 1.384 (5)
C4—C5 1.369 (4) C13—H13 0.9300
C4—H4 0.9300 C14—C15 1.343 (5)
C5—C6 1.396 (4) C14—H14 0.9300
C5—H5 0.9300 C15—C16 1.412 (4)
C6—C7 1.383 (4) C15—H15 0.9300
C6—C8 1.479 (4) C16—C17 1.464 (5)
C7—O1 1.378 (3) C17—O6 1.209 (4)
C8—O5 1.210 (4) C17—H17 0.9300
C8—H8 0.9300 C18—O3 1.431 (3)
C9—O1 1.449 (3) C18—H18A 0.9600
C9—C10 1.489 (4) C18—H18B 0.9600
C9—H9A 0.9700 C18—H18C 0.9600
C9—H9B 0.9700
O4—C1—H1A 109.5 C9—C10—H10A 110.0
O4—C1—H1B 109.5 O2—C10—H10B 110.0
H1A—C1—H1B 109.5 C9—C10—H10B 110.0
O4—C1—H1C 109.5 H10A—C10—H10B 108.4
H1A—C1—H1C 109.5 O2—C11—C16 119.1 (3)
H1B—C1—H1C 109.5 O2—C11—C12 120.4 (3)
O4—C2—C3 125.0 (3) C16—C11—C12 120.4 (3)
O4—C2—C7 115.8 (3) O3—C12—C13 125.5 (3)
C3—C2—C7 119.1 (3) O3—C12—C11 115.5 (3)
C2—C3—C4 120.7 (3) C13—C12—C11 119.0 (3)
C2—C3—H3 119.7 C14—C13—C12 120.4 (4)
C4—C3—H3 119.7 C14—C13—H13 119.8
C5—C4—C3 120.7 (3) C12—C13—H13 119.8
C5—C4—H4 119.6 C15—C14—C13 120.7 (4)
C3—C4—H4 119.6 C15—C14—H14 119.6
C4—C5—C6 119.8 (3) C13—C14—H14 119.6
C4—C5—H5 120.1 C14—C15—C16 120.9 (4)
C6—C5—H5 120.1 C14—C15—H15 119.6
C7—C6—C5 120.0 (3) C16—C15—H15 119.6
C7—C6—C8 121.8 (3) C11—C16—C15 118.6 (3)
C5—C6—C8 118.2 (3) C11—C16—C17 121.3 (3)
O1—C7—C6 120.2 (3) C15—C16—C17 120.1 (3)
O1—C7—C2 119.9 (3) O6—C17—C16 124.3 (4)
C6—C7—C2 119.7 (3) O6—C17—H17 117.8
O5—C8—C6 123.2 (3) C16—C17—H17 117.8
O5—C8—H8 118.4 O3—C18—H18A 109.5
C6—C8—H8 118.4 O3—C18—H18B 109.5
O1—C9—C10 113.4 (2) H18A—C18—H18B 109.5
O1—C9—H9A 108.9 O3—C18—H18C 109.5
C10—C9—H9A 108.9 H18A—C18—H18C 109.5
O1—C9—H9B 108.9 H18B—C18—H18C 109.5
C10—C9—H9B 108.9 C7—O1—C9 114.8 (2)
H9A—C9—H9B 107.7 C11—O2—C10 114.8 (2)
O2—C10—C9 108.3 (2) C12—O3—C18 117.6 (3)
O2—C10—H10A 110.0 C2—O4—C1 117.4 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5080).

References

  1. Bruker (2004). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA
  2. Higham, L. T., Scott, J. L. & Strauss, J. R. (2010). Cryst. Growth Des. 10, 2409–2420.
  3. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Tuncer, H. & Erk, C. (2000). Dyes Pigments, 44, 81–86.
  6. Valeur, B., Pouget, J., Bourson, J., Kaschke, M. & Ernsting, N. P. (1992). J. Phys. Chem. 96, 6545–6549.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810054085/sj5080sup1.cif

e-67-0o306-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054085/sj5080Isup2.hkl

e-67-0o306-Isup2.hkl (138.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES