Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 22;67(Pt 2):o441. doi: 10.1107/S1600536811001279

N-(4-Butanoyl-3-hy­droxy­phen­yl)butanamide

Ming-Ming Yang a, Fang-Shi Li a,*, Qi-Sheng Lu a, Hao-Wei Wang a, Qing Xie a
PMCID: PMC3051673  PMID: 21523105

Abstract

The title compound, C14H19NO3, was prepared via the intra­molecular rearrangement of 3-(butanoyl­amino)­phenyl butano­ate in the presence of anhydrous aluminium chloride. The near coplanarity of the aromatic ring, the amide group and the carbonyl group of the butanoyl fragment [N—C—C—C = −179.65 (17) and O—C—C—C = −178.34 (17)°] results from the intra­molecular O—H⋯O and C—H⋯O hydrogen bonds. In the crystal, the mol­ecules form a one-dimensional polymeric structure via N—H⋯O inter­actions between their amide groups.

Related literature

For the synthesis, see: Wang et al. (2006).graphic file with name e-67-0o441-scheme1.jpg

Experimental

Crystal data

  • C14H19NO3

  • M r = 249.30

  • Monoclinic, Inline graphic

  • a = 6.2870 (13) Å

  • b = 10.008 (2) Å

  • c = 21.680 (4) Å

  • β = 97.96 (3)°

  • V = 1351.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.975, T max = 0.983

  • 2684 measured reflections

  • 2448 independent reflections

  • 1732 reflections with I > 2σ(I)

  • R int = 0.035

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.160

  • S = 1.00

  • 2448 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001279/gk2334sup1.cif

e-67-0o441-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001279/gk2334Isup2.hkl

e-67-0o441-Isup2.hkl (120.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.29 3.109 (2) 160
O2—H2A⋯O3 0.82 1.83 2.552 (3) 146
C6—H6A⋯O1 0.93 2.27 2.875 (3) 122

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The title compound is an important intermediate for the synthesis of an anticoccidial drug Nequinate. It was prepared via intramolecular rearrangement of 3-(butanoylamino)phenyl butanoate in 1,2-dichloroethane in the presence of anhydrous aluminium chloride. We report here the crystal structure of the title compound.

The molecular structure is shown in Fig. 1.

In the crystal, molecules are linked via intermolecular N—H···O hydrogen bond to form chains.

Experimental

The title compound (m.p. 381 K) was prepared by a method reported by Wang et al. (2006). The crystals were obtained from methanolic solution by slow evaporation.

Refinement

All H atoms were positioned geometrically, with O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.93-0.97 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N,O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown by dashed lines.

Fig. 2.

Fig. 2.

A packing diagram. Hhydrogen bond is shown by dashed lines.

Crystal data

C14H19NO3 F(000) = 536
Mr = 249.30 Dx = 1.226 Mg m3
Monoclinic, P21/n Melting point: 381 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 6.2870 (13) Å Cell parameters from 25 reflections
b = 10.008 (2) Å θ = 10–13°
c = 21.680 (4) Å µ = 0.09 mm1
β = 97.96 (3)° T = 293 K
V = 1351.0 (5) Å3 Plate, colorless
Z = 4 0.30 × 0.20 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 1732 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.035
graphite θmax = 25.3°, θmin = 1.9°
ω/2θ scans h = 0→7
Absorption correction: ψ scan (North et al., 1968) k = 0→12
Tmin = 0.975, Tmax = 0.983 l = −26→25
2684 measured reflections 3 standard reflections every 200 reflections
2448 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.1P)2 + 0.080P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2448 reflections Δρmax = 0.19 e Å3
164 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.045 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1152 (3) 0.62012 (16) 0.25206 (8) 0.0443 (5)
H1N 0.1438 0.7034 0.2480 0.053*
O1 0.2269 (3) 0.41334 (15) 0.22806 (8) 0.0653 (5)
O2 −0.3406 (3) 0.31968 (14) 0.34457 (8) 0.0624 (5)
H2A −0.4387 0.3191 0.3659 0.094*
O3 −0.6164 (3) 0.41920 (16) 0.40749 (9) 0.0686 (5)
C1 0.1729 (6) 0.5577 (3) 0.07966 (14) 0.0959 (10)
H1A 0.1779 0.5148 0.0403 0.144*
H1B 0.1475 0.6515 0.0732 0.144*
H1C 0.0590 0.5196 0.0992 0.144*
C2 0.3834 (5) 0.5374 (2) 0.12083 (11) 0.0668 (7)
H2B 0.4978 0.5753 0.1006 0.080*
H2C 0.4104 0.4423 0.1259 0.080*
C3 0.3882 (4) 0.6008 (2) 0.18464 (11) 0.0547 (6)
H3A 0.5332 0.5959 0.2067 0.066*
H3B 0.3502 0.6945 0.1795 0.066*
C4 0.2373 (3) 0.5346 (2) 0.22330 (10) 0.0445 (5)
C5 −0.0507 (3) 0.59311 (17) 0.28740 (9) 0.0398 (5)
C6 −0.1165 (3) 0.46492 (18) 0.29964 (10) 0.0442 (5)
H6A −0.0497 0.3914 0.2844 0.053*
C7 −0.2832 (3) 0.44685 (19) 0.33483 (9) 0.0444 (5)
C8 −0.3858 (3) 0.55602 (19) 0.35889 (9) 0.0425 (5)
C9 −0.3162 (3) 0.6842 (2) 0.34437 (9) 0.0453 (5)
H9A −0.3830 0.7585 0.3589 0.054*
C10 −0.1537 (3) 0.70308 (19) 0.30956 (9) 0.0442 (5)
H10A −0.1116 0.7892 0.3006 0.053*
C11 −0.5560 (3) 0.5341 (2) 0.39762 (10) 0.0490 (5)
C12 −0.6540 (3) 0.6497 (2) 0.42757 (10) 0.0534 (6)
H12A −0.7122 0.7119 0.3953 0.064*
H12B −0.5417 0.6957 0.4547 0.064*
C13 −0.8299 (4) 0.6116 (3) 0.46512 (10) 0.0580 (6)
H13A −0.7728 0.5484 0.4971 0.070*
H13B −0.9440 0.5673 0.4380 0.070*
C14 −0.9232 (5) 0.7300 (3) 0.49570 (12) 0.0794 (8)
H14A −1.0325 0.6996 0.5192 0.119*
H14B −0.9846 0.7916 0.4642 0.119*
H14C −0.8115 0.7738 0.5231 0.119*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0468 (10) 0.0330 (9) 0.0537 (10) −0.0018 (7) 0.0090 (8) 0.0002 (7)
O1 0.0714 (11) 0.0388 (9) 0.0915 (13) 0.0046 (7) 0.0315 (10) −0.0037 (8)
O2 0.0734 (11) 0.0376 (9) 0.0804 (11) −0.0086 (7) 0.0251 (9) 0.0033 (7)
O3 0.0702 (11) 0.0529 (10) 0.0876 (12) −0.0110 (8) 0.0286 (10) 0.0042 (8)
C1 0.125 (3) 0.087 (2) 0.0665 (18) 0.0120 (19) −0.0203 (18) −0.0066 (15)
C2 0.0887 (18) 0.0555 (14) 0.0596 (15) 0.0114 (13) 0.0224 (14) 0.0024 (12)
C3 0.0519 (13) 0.0520 (13) 0.0619 (14) −0.0067 (10) 0.0140 (11) −0.0059 (11)
C4 0.0425 (11) 0.0398 (12) 0.0503 (12) 0.0007 (9) 0.0038 (9) −0.0037 (9)
C5 0.0397 (11) 0.0354 (10) 0.0423 (11) −0.0005 (8) −0.0019 (9) 0.0007 (8)
C6 0.0471 (11) 0.0334 (11) 0.0517 (12) 0.0029 (9) 0.0053 (10) −0.0021 (9)
C7 0.0499 (12) 0.0332 (10) 0.0482 (12) −0.0042 (9) −0.0006 (9) 0.0016 (9)
C8 0.0412 (11) 0.0404 (11) 0.0439 (11) −0.0033 (9) −0.0004 (9) 0.0013 (9)
C9 0.0477 (12) 0.0390 (11) 0.0496 (12) 0.0025 (9) 0.0073 (10) −0.0038 (9)
C10 0.0498 (12) 0.0309 (10) 0.0520 (12) −0.0022 (9) 0.0070 (10) 0.0006 (9)
C11 0.0460 (12) 0.0486 (13) 0.0505 (12) −0.0040 (10) −0.0008 (10) 0.0028 (9)
C12 0.0493 (12) 0.0573 (14) 0.0540 (13) −0.0039 (10) 0.0087 (10) −0.0011 (11)
C13 0.0551 (13) 0.0691 (15) 0.0512 (13) −0.0006 (11) 0.0119 (11) 0.0037 (11)
C14 0.089 (2) 0.084 (2) 0.0723 (17) −0.0043 (15) 0.0356 (16) −0.0064 (14)

Geometric parameters (Å, °)

N1—C4 1.357 (3) C6—C7 1.390 (3)
N1—C5 1.403 (2) C6—H6A 0.9300
N1—H1N 0.8600 C7—C8 1.406 (3)
O1—C4 1.221 (2) C8—C9 1.405 (3)
O2—C7 1.348 (2) C8—C11 1.466 (3)
O2—H2A 0.8200 C9—C10 1.365 (3)
O3—C11 1.239 (3) C9—H9A 0.9300
C1—C2 1.504 (4) C10—H10A 0.9300
C1—H1A 0.9600 C11—C12 1.500 (3)
C1—H1B 0.9600 C12—C13 1.510 (3)
C1—H1C 0.9600 C12—H12A 0.9700
C2—C3 1.519 (3) C12—H12B 0.9700
C2—H2B 0.9700 C13—C14 1.515 (3)
C2—H2C 0.9700 C13—H13A 0.9700
C3—C4 1.504 (3) C13—H13B 0.9700
C3—H3A 0.9700 C14—H14A 0.9600
C3—H3B 0.9700 C14—H14B 0.9600
C5—C6 1.385 (2) C14—H14C 0.9600
C5—C10 1.396 (3)
C4—N1—C5 129.76 (17) O2—C7—C8 121.95 (19)
C4—N1—H1N 115.1 C6—C7—C8 121.46 (18)
C5—N1—H1N 115.1 C9—C8—C7 116.97 (18)
C7—O2—H2A 109.5 C9—C8—C11 122.65 (18)
C2—C1—H1A 109.5 C7—C8—C11 120.38 (18)
C2—C1—H1B 109.5 C10—C9—C8 122.01 (18)
H1A—C1—H1B 109.5 C10—C9—H9A 119.0
C2—C1—H1C 109.5 C8—C9—H9A 119.0
H1A—C1—H1C 109.5 C9—C10—C5 120.00 (18)
H1B—C1—H1C 109.5 C9—C10—H10A 120.0
C1—C2—C3 112.9 (2) C5—C10—H10A 120.0
C1—C2—H2B 109.0 O3—C11—C8 120.2 (2)
C3—C2—H2B 109.0 O3—C11—C12 119.15 (19)
C1—C2—H2C 109.0 C8—C11—C12 120.61 (18)
C3—C2—H2C 109.0 C11—C12—C13 114.48 (19)
H2B—C2—H2C 107.8 C11—C12—H12A 108.6
C4—C3—C2 112.88 (19) C13—C12—H12A 108.6
C4—C3—H3A 109.0 C11—C12—H12B 108.6
C2—C3—H3A 109.0 C13—C12—H12B 108.6
C4—C3—H3B 109.0 H12A—C12—H12B 107.6
C2—C3—H3B 109.0 C12—C13—C14 113.3 (2)
H3A—C3—H3B 107.8 C12—C13—H13A 108.9
O1—C4—N1 123.21 (19) C14—C13—H13A 108.9
O1—C4—C3 122.04 (19) C12—C13—H13B 108.9
N1—C4—C3 114.76 (18) C14—C13—H13B 108.9
C6—C5—C10 119.95 (18) H13A—C13—H13B 107.7
C6—C5—N1 123.20 (17) C13—C14—H14A 109.5
C10—C5—N1 116.84 (16) C13—C14—H14B 109.5
C5—C6—C7 119.58 (18) H14A—C14—H14B 109.5
C5—C6—H6A 120.2 C13—C14—H14C 109.5
C7—C6—H6A 120.2 H14A—C14—H14C 109.5
O2—C7—C6 116.59 (17) H14B—C14—H14C 109.5
C1—C2—C3—C4 67.0 (3) C6—C7—C8—C11 −177.91 (18)
C5—N1—C4—O1 −5.1 (3) C7—C8—C9—C10 −1.3 (3)
C5—N1—C4—C3 174.86 (19) C11—C8—C9—C10 178.29 (19)
C2—C3—C4—O1 46.3 (3) C8—C9—C10—C5 −0.2 (3)
C2—C3—C4—N1 −133.7 (2) C6—C5—C10—C9 1.4 (3)
C4—N1—C5—C6 1.0 (3) N1—C5—C10—C9 −179.87 (17)
C4—N1—C5—C10 −177.72 (19) C9—C8—C11—O3 177.71 (19)
C10—C5—C6—C7 −1.0 (3) C7—C8—C11—O3 −2.7 (3)
N1—C5—C6—C7 −179.65 (17) C9—C8—C11—C12 −4.4 (3)
C5—C6—C7—O2 179.43 (17) C7—C8—C11—C12 175.14 (18)
C5—C6—C7—C8 −0.6 (3) O3—C11—C12—C13 −3.1 (3)
O2—C7—C8—C9 −178.34 (17) C8—C11—C12—C13 179.01 (18)
C6—C7—C8—C9 1.7 (3) C11—C12—C13—C14 179.02 (19)
O2—C7—C8—C11 2.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.86 2.29 3.109 (2) 160
O2—H2A···O3 0.82 1.83 2.552 (3) 146
C6—H6A···O1 0.93 2.27 2.875 (3) 122

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2334).

References

  1. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wang, X. Z., Zhang, S. J., Dai, L. Y. & Chen, Y. Q. (2006). CN Patent No. 173303.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001279/gk2334sup1.cif

e-67-0o441-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001279/gk2334Isup2.hkl

e-67-0o441-Isup2.hkl (120.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES