Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 22;67(Pt 2):o432–o433. doi: 10.1107/S160053681100170X

Enrofloxacinium picrate

Jerry P Jasinski a,*, Ray J Butcher b, M S Siddegowda c, H S Yathirajan c, B P Siddaraju c
PMCID: PMC3051675  PMID: 21523099

Abstract

There is one cation–anion pair in the asymmetric unit of the title compound [systematic name: 4-(3-carb­oxy-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)-1-ethyl­piperazin-1-ium 2,4,6-tri­nitro­phenolate], C19H23FN3O3 +·C6H2N3O7 . The six-membered piperazine group in the cation adopts a slightly distorted chair conformation and contains a protonated N atom. The dihedral angles between the mean planes of the cyclo­propyl and piperazine rings in the cation with the 10-atom ring system of the quinolone group are 48.1 (1) and 69.9 (5)°, respectively. The picrate anion inter­acts with the protonated N atom of an adjacent cation through a bifurcated N—H⋯O three-center hydrogen bond, forming an R 1 2(6) ring motif. Furthermore, there is an intra­molecular O—H⋯O hydrogen bond. The dihedral angle between the mean planes of the anion benzene and cation piperizine, quinoline and cyclo­propyl rings are 61.3 (6), 31.1 (4) and 70.4 (9)°, respectively. The mean planes of the two o-NO2 and single p-NO2 groups in the picrate anion are twisted by 6.7 (6), 38.3 (9) and 12.8 (7)° with respect to the mean plane of the benzene ring. Strong N—H⋯O and weak inter­molecular C—H⋯O hydrogen bonds in concert with weak π–π stacking inter­actions [centroid–centroid distances = 3.5785 (13), 3.7451 (12) and 3.6587 (13) Å] dominate the crystal packing.

Related literature

For background to fluoro­quinolones, see: Bhanot et al. (2001); Scholar (2003). For related structures, see: Hu & Yu, (2005); Jasinski et al. (2009, 2010a , 2010b ); Recillas-Mota et al. (2007); Sun et al. (2004); Wang et al. (2005); Zou et al. (2005). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-67-0o432-scheme1.jpg

Experimental

Crystal data

  • C19H23FN3O3 +·C6H2N3O7

  • M r = 588.51

  • Triclinic, Inline graphic

  • a = 7.2111 (7) Å

  • b = 12.5766 (7) Å

  • c = 16.2362 (4) Å

  • α = 105.556 (2)°

  • β = 96.367 (6)°

  • γ = 96.223 (7)°

  • V = 1395.04 (16) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.98 mm−1

  • T = 295 K

  • 0.44 × 0.31 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.896, T max = 1.000

  • 9440 measured reflections

  • 5437 independent reflections

  • 3425 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.177

  • S = 1.00

  • 5437 reflections

  • 382 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681100170X/bt5451sup1.cif

e-67-0o432-sup1.cif (26.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100170X/bt5451Isup2.hkl

e-67-0o432-Isup2.hkl (266.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 1.78 2.536 (3) 151
N3—H3A⋯O1A 0.91 1.87 2.724 (3) 155
N3—H3A⋯O7A 0.91 2.38 3.024 (3) 128
C11—H11A⋯O3i 0.98 2.55 3.385 (3) 144
C15—H15B⋯O1ii 0.97 2.35 3.312 (3) 169
C17—H17B⋯O3Aiii 0.97 2.56 3.458 (4) 154
C3A—H3AA⋯O3iv 0.93 2.55 3.331 (3) 142
C9—H9A⋯O4Av 0.93 2.58 3.495 (3) 170
C14—H14B⋯O5Avi 0.97 2.60 3.517 (4) 157
C18—H18A⋯O5Avii 0.97 2.50 3.451 (5) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

MSS thanks the University of Mysore for the research facilities and HSY thanks the UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Enrofloxacin is a fluoroquinolone antibiotic and is a synthetic chemotherapeutic agent from the class of the fluoroquinolone carboxylic acid derivatives. It is sold by the Bayer Corporation under the trade name Baytril and has antibacterial activity against a broad spectrum of Gram-negative and Gram-positive bacteria. Its mechanism of action is not thoroughly understood, but it is believed to act by inhibiting bacterial DNA gyrase (a type-II topoisomerase), thereby preventing DNA supercoiling and DNA synthesis. The chemical and biological aspects of fluoroquinolones is described (Bhanot et al., 2001; Scholar, 2003). The crystal structure of norfloxacin hydrochloride (Zou et al., 2005) and norfloxacin methanol solvate (Wang et al., 2005) have already been reported. The crystal structure of a copper complex of enrofloxacin (Recillas-Mota et al., 2007), norfloxacin picrate (Hu & Yu, 2005) and 2-hydroxyethanaminium enrofloxacinate (Sun et al., 2004) are reported. Recently, the crystal structures of propiverine picrate (Jasinski et al., 2009), imatinibium dipicrate (Jasinski et al., 2010a) and chlorimipraminium picrate (Jasinski et al., 2010b) have been reported. In continuation of our work on picrates of biologically active compounds, this paper reports the crystal structure of C19H22FN3O3+ . C6H2N3O7- obtained by the interaction of picric acid and enrofloxacin.

In the crystal structure of the title compound, (I), there is one cation-anion pair in the asymmetric unit (Fig. 1). One N atom in the 6-membered piperazine ring (N2/C14/C15/N3/C16/C17) in the enrofloxacinium cation is protonated which adopts a slightly distorted chair conformation with puckering parameters Q, θ and φ of 0.563 (3)A%, 4.0 (3)° and 358.0 (5)° (Cremer & Pople, 1975). The dihedral angles between the mean planes of the cyclopropyl and piperazine rings with the 10-atom ring system of the quinolone group are 48.1 (1)° and 69.9 (5)°, respectively. The picrate anion interacts with the protonated N atom of an adjacent cation through a bifurcated N—H···O three-center hydrogen bond forming a R12(6) ring motif. The dihedral angle between the mean planes of the anion benzene and cation piperizine, quinoline and cyclopropyl rings are 61.3 (6)°, 31.1 (4)° and 70.4 (9)°, respectively. The mean planes of the two o-NO2 and single p-NO2 groups in the picrate anion are twisted by 6.7 (6)°, 38.3 (9)° and 12.8 (7)° with respect to the mean planes of the 6-membered benzene ring. Bond distances and angles are in normal ranges (Allen et al., 1987). Strong N—H···O and weak intermolecular C—H···O hydrogen bonds in concert with weak π–π stacking interactions (Table 2) dominate the crystal packing creating a 2-D network structure along 011 (Fig. 2).

Experimental

Enrofloxacin (3.59 g, 0.1 mol) and picric acid (2.99 g, 0.1 mol) were dissolved in a mixture of acetonitrile and dimethyl sulfoxide (80:20 v/v). The solution was stirred for 15 min over a heating magnetic stirrer at 333 K. The resulting solution was kept aside at room temperature. After few days, X-ray quality crystals of the title compound were grown by slow evaporation (m.p.: 490 – 493 K).

Refinement

All H atoms were refined using the riding model with Atom—H lengths of 0.93 & 0.98Å (CH), 0.97Å (CH2), 0.96Å (CH3), 0.91Å (NH) or 0.82 (OH). Isotropic displacement parameters for these atoms were set to 1.20 times (NH), 1.19–1.20 (CH, CH2) or 1.49 (CH3, OH) times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate a bifurcated N—H···O intermolecular, three-centered hydrogen bond formed between the protonated N atom from the enrofloxacin cation and the picrate anion providing a R12(6) ring motif.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the a axis. Dashed lines indicate N—H···O hydrogen bonds and weak C—H···O intermolecular interactions creating a 2-D network structure along 011.

Crystal data

C19H23FN3O3+·C6H2N3O7 Z = 2
Mr = 588.51 F(000) = 612
Triclinic, P1 Dx = 1.401 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54178 Å
a = 7.2111 (7) Å Cell parameters from 2958 reflections
b = 12.5766 (7) Å θ = 5.3–73.4°
c = 16.2362 (4) Å µ = 0.98 mm1
α = 105.556 (2)° T = 295 K
β = 96.367 (6)° Plate, pale yellow
γ = 96.223 (7)° 0.44 × 0.31 × 0.12 mm
V = 1395.04 (16) Å3

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 5437 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3425 reflections with I > 2σ(I)
graphite Rint = 0.032
Detector resolution: 10.5081 pixels mm-1 θmax = 73.6°, θmin = 5.3°
ω scans h = −5→8
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −15→14
Tmin = 0.896, Tmax = 1.000 l = −20→20
9440 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0924P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
5437 reflections Δρmax = 0.20 e Å3
382 parameters Δρmin = −0.20 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0007 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.0392 (3) 0.14397 (14) 0.02905 (11) 0.0785 (5)
O1 0.4038 (4) 0.7253 (2) −0.10088 (16) 0.0920 (8)
O2 0.3085 (3) 0.5648 (2) −0.19916 (12) 0.0747 (6)
H2 0.2552 0.5031 −0.2008 0.112*
O3 0.2077 (3) 0.39341 (17) −0.15203 (11) 0.0611 (5)
N1 0.2699 (3) 0.59410 (17) 0.09706 (12) 0.0456 (5)
N2 0.0978 (3) 0.27232 (19) 0.20117 (14) 0.0580 (6)
N3 0.3999 (3) 0.2675 (2) 0.33307 (14) 0.0591 (6)
H3A 0.3366 0.2332 0.3665 0.071*
C1 0.1315 (3) 0.3205 (2) 0.13528 (16) 0.0490 (6)
C2 0.1818 (3) 0.4344 (2) 0.14892 (15) 0.0460 (5)
H2A 0.1934 0.4819 0.2046 0.055*
C3 0.2153 (3) 0.47948 (19) 0.08107 (13) 0.0405 (5)
C4 0.3062 (3) 0.6357 (2) 0.03193 (15) 0.0465 (5)
H4A 0.3420 0.7123 0.0444 0.056*
C5 0.2938 (3) 0.5723 (2) −0.05229 (15) 0.0469 (5)
C6 0.3401 (4) 0.6293 (3) −0.11816 (18) 0.0617 (7)
C7 0.2321 (3) 0.4553 (2) −0.07435 (14) 0.0465 (5)
C8 0.1951 (3) 0.4099 (2) −0.00384 (14) 0.0448 (5)
C9 0.1368 (3) 0.2958 (2) −0.01881 (16) 0.0510 (6)
H9A 0.1199 0.2484 −0.0748 0.061*
C10 0.1051 (4) 0.2543 (2) 0.04762 (17) 0.0553 (6)
C11 0.2678 (4) 0.6702 (2) 0.18217 (16) 0.0519 (6)
H11A 0.1420 0.6815 0.1971 0.062*
C12 0.4138 (4) 0.6777 (3) 0.25637 (18) 0.0645 (7)
H12A 0.3750 0.6903 0.3131 0.077*
H12B 0.5118 0.6306 0.2463 0.077*
C13 0.4137 (5) 0.7695 (3) 0.2158 (2) 0.0735 (8)
H13A 0.5119 0.7788 0.1810 0.088*
H13B 0.3752 0.8384 0.2478 0.088*
C14 0.1708 (5) 0.1684 (3) 0.2041 (2) 0.0691 (8)
H14A 0.1588 0.1193 0.1458 0.083*
H14B 0.0958 0.1309 0.2368 0.083*
C15 0.3727 (4) 0.1898 (3) 0.24448 (18) 0.0639 (7)
H15A 0.4143 0.1198 0.2470 0.077*
H15B 0.4494 0.2213 0.2090 0.077*
C16 0.3177 (5) 0.3719 (2) 0.33310 (18) 0.0650 (7)
H16A 0.3916 0.4147 0.3034 0.078*
H16B 0.3222 0.4172 0.3921 0.078*
C17 0.1147 (4) 0.3434 (3) 0.28845 (17) 0.0612 (7)
H17A 0.0393 0.3063 0.3213 0.073*
H17B 0.0651 0.4118 0.2874 0.073*
C18 0.6053 (5) 0.2905 (4) 0.3705 (3) 0.0917 (11)
H18A 0.6582 0.2213 0.3560 0.110*
H18B 0.6707 0.3413 0.3441 0.110*
C19 0.6391 (7) 0.3390 (4) 0.4650 (3) 0.1301 (18)
H19A 0.7709 0.3660 0.4836 0.195*
H19B 0.6006 0.2830 0.4923 0.195*
H19C 0.5677 0.3997 0.4807 0.195*
O1A 0.1749 (3) 0.2238 (2) 0.44767 (13) 0.0791 (7)
O2A 0.1956 (6) 0.4178 (2) 0.5795 (2) 0.1384 (15)
O3A −0.0251 (4) 0.3840 (2) 0.64871 (17) 0.0934 (8)
O4A 0.0864 (4) 0.0906 (2) 0.78322 (15) 0.0947 (8)
O5A 0.2090 (4) −0.0501 (2) 0.71552 (16) 0.0919 (8)
O6A 0.3078 (3) −0.09139 (19) 0.42732 (14) 0.0761 (6)
O7A 0.3468 (4) 0.0487 (2) 0.37754 (15) 0.0939 (8)
N1A 0.0996 (4) 0.3558 (2) 0.60751 (17) 0.0724 (7)
N2A 0.1542 (4) 0.0399 (2) 0.72150 (14) 0.0640 (6)
N3A 0.2989 (3) 0.0068 (2) 0.43254 (14) 0.0594 (6)
C1A 0.1855 (3) 0.1834 (2) 0.50984 (16) 0.0528 (6)
C2A 0.1375 (4) 0.2406 (2) 0.59322 (17) 0.0531 (6)
C3A 0.1247 (4) 0.1958 (2) 0.65942 (16) 0.0526 (6)
H3AA 0.0879 0.2362 0.7103 0.063*
C4A 0.1673 (3) 0.0878 (2) 0.65059 (15) 0.0494 (6)
C5A 0.2252 (3) 0.0292 (2) 0.57639 (16) 0.0489 (5)
H5AA 0.2573 −0.0416 0.5717 0.059*
C6A 0.2361 (3) 0.0748 (2) 0.50884 (15) 0.0486 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.1083 (14) 0.0580 (10) 0.0638 (11) −0.0030 (9) 0.0032 (9) 0.0181 (8)
O1 0.129 (2) 0.0800 (16) 0.0781 (15) −0.0007 (15) 0.0328 (14) 0.0403 (13)
O2 0.0854 (14) 0.1032 (17) 0.0458 (11) 0.0184 (12) 0.0220 (9) 0.0319 (10)
O3 0.0700 (11) 0.0758 (12) 0.0350 (9) 0.0115 (9) 0.0124 (8) 0.0093 (8)
N1 0.0441 (10) 0.0565 (12) 0.0375 (10) 0.0120 (9) 0.0084 (8) 0.0128 (8)
N2 0.0635 (13) 0.0660 (14) 0.0527 (12) 0.0125 (11) 0.0111 (10) 0.0286 (11)
N3 0.0636 (13) 0.0714 (15) 0.0543 (13) 0.0129 (11) 0.0117 (10) 0.0358 (11)
C1 0.0479 (12) 0.0589 (15) 0.0458 (13) 0.0112 (11) 0.0087 (10) 0.0224 (11)
C2 0.0479 (12) 0.0560 (14) 0.0356 (11) 0.0150 (10) 0.0049 (9) 0.0130 (10)
C3 0.0372 (10) 0.0521 (13) 0.0344 (10) 0.0139 (9) 0.0058 (8) 0.0131 (9)
C4 0.0425 (11) 0.0555 (14) 0.0456 (13) 0.0111 (10) 0.0099 (9) 0.0182 (10)
C5 0.0433 (12) 0.0630 (15) 0.0403 (12) 0.0147 (11) 0.0100 (9) 0.0200 (11)
C6 0.0618 (16) 0.084 (2) 0.0526 (15) 0.0217 (15) 0.0219 (12) 0.0319 (14)
C7 0.0368 (11) 0.0665 (15) 0.0392 (12) 0.0155 (10) 0.0083 (9) 0.0157 (11)
C8 0.0400 (11) 0.0586 (14) 0.0383 (11) 0.0161 (10) 0.0055 (9) 0.0147 (10)
C9 0.0544 (13) 0.0554 (14) 0.0408 (12) 0.0149 (11) 0.0044 (10) 0.0077 (10)
C10 0.0579 (14) 0.0553 (15) 0.0515 (14) 0.0071 (12) 0.0039 (11) 0.0156 (11)
C11 0.0520 (13) 0.0588 (15) 0.0439 (13) 0.0149 (11) 0.0109 (10) 0.0087 (11)
C12 0.0591 (15) 0.0800 (19) 0.0465 (14) 0.0117 (14) 0.0044 (11) 0.0053 (13)
C13 0.087 (2) 0.0675 (19) 0.0558 (17) −0.0051 (16) 0.0171 (15) 0.0045 (13)
C14 0.094 (2) 0.0607 (17) 0.0593 (17) 0.0093 (15) 0.0109 (15) 0.0299 (14)
C15 0.085 (2) 0.0666 (17) 0.0584 (16) 0.0319 (15) 0.0293 (14) 0.0329 (13)
C16 0.092 (2) 0.0609 (17) 0.0481 (15) 0.0189 (15) 0.0131 (13) 0.0205 (12)
C17 0.0722 (17) 0.0759 (18) 0.0541 (15) 0.0292 (14) 0.0270 (13) 0.0352 (13)
C18 0.073 (2) 0.114 (3) 0.100 (3) 0.014 (2) −0.0005 (19) 0.054 (2)
C19 0.124 (4) 0.145 (4) 0.107 (4) −0.007 (3) −0.042 (3) 0.045 (3)
O1A 0.0990 (15) 0.1074 (17) 0.0575 (12) 0.0444 (13) 0.0295 (11) 0.0493 (12)
O2A 0.217 (4) 0.0739 (18) 0.162 (3) 0.035 (2) 0.101 (3) 0.061 (2)
O3A 0.1141 (19) 0.0871 (17) 0.0886 (17) 0.0479 (15) 0.0326 (15) 0.0208 (13)
O4A 0.158 (2) 0.0823 (16) 0.0574 (13) 0.0197 (15) 0.0483 (15) 0.0295 (11)
O5A 0.137 (2) 0.0827 (16) 0.0819 (16) 0.0374 (15) 0.0402 (15) 0.0491 (13)
O6A 0.0938 (15) 0.0690 (14) 0.0653 (13) 0.0195 (11) 0.0230 (11) 0.0112 (10)
O7A 0.143 (2) 0.0989 (17) 0.0629 (14) 0.0416 (16) 0.0566 (15) 0.0364 (12)
N1A 0.0965 (19) 0.0661 (16) 0.0625 (15) 0.0235 (14) 0.0164 (14) 0.0250 (12)
N2A 0.0870 (16) 0.0625 (15) 0.0475 (12) 0.0052 (12) 0.0192 (11) 0.0224 (11)
N3A 0.0624 (13) 0.0688 (16) 0.0470 (12) 0.0137 (11) 0.0110 (10) 0.0136 (11)
C1A 0.0504 (13) 0.0682 (16) 0.0464 (13) 0.0124 (12) 0.0100 (10) 0.0250 (12)
C2A 0.0553 (14) 0.0580 (15) 0.0505 (14) 0.0104 (11) 0.0113 (11) 0.0206 (11)
C3A 0.0556 (14) 0.0602 (15) 0.0410 (12) 0.0048 (11) 0.0099 (10) 0.0130 (11)
C4A 0.0541 (13) 0.0545 (14) 0.0415 (12) 0.0022 (11) 0.0105 (10) 0.0180 (10)
C5A 0.0489 (12) 0.0482 (13) 0.0495 (13) 0.0036 (10) 0.0071 (10) 0.0151 (10)
C6A 0.0468 (12) 0.0622 (15) 0.0360 (11) 0.0056 (11) 0.0072 (9) 0.0128 (10)

Geometric parameters (Å, °)

F1—C10 1.358 (3) C13—H13B 0.9700
O1—C6 1.191 (4) C14—C15 1.493 (4)
O2—C6 1.327 (4) C14—H14A 0.9700
O2—H2 0.8200 C14—H14B 0.9700
O3—C7 1.274 (3) C15—H15A 0.9700
N1—C4 1.337 (3) C15—H15B 0.9700
N1—C3 1.398 (3) C16—C17 1.519 (4)
N1—C11 1.457 (3) C16—H16A 0.9700
N2—C1 1.394 (3) C16—H16B 0.9700
N2—C17 1.443 (4) C17—H17A 0.9700
N2—C14 1.472 (4) C17—H17B 0.9700
N3—C15 1.485 (4) C18—C19 1.473 (6)
N3—C16 1.497 (4) C18—H18A 0.9700
N3—C18 1.503 (4) C18—H18B 0.9700
N3—H3A 0.9100 C19—H19A 0.9600
C1—C2 1.390 (3) C19—H19B 0.9600
C1—C10 1.423 (4) C19—H19C 0.9600
C2—C3 1.399 (3) O1A—C1A 1.245 (3)
C2—H2A 0.9300 O2A—N1A 1.199 (4)
C3—C8 1.403 (3) O3A—N1A 1.207 (3)
C4—C5 1.373 (3) O4A—N2A 1.218 (3)
C4—H4A 0.9300 O5A—N2A 1.222 (3)
C5—C7 1.425 (4) O6A—N3A 1.224 (3)
C5—C6 1.486 (3) O7A—N3A 1.215 (3)
C7—C8 1.447 (3) N1A—C2A 1.465 (4)
C8—C9 1.398 (4) N2A—C4A 1.443 (3)
C9—C10 1.349 (4) N3A—C6A 1.453 (3)
C9—H9A 0.9300 C1A—C6A 1.447 (4)
C11—C13 1.479 (4) C1A—C2A 1.451 (4)
C11—C12 1.485 (4) C2A—C3A 1.348 (3)
C11—H11A 0.9800 C3A—C4A 1.399 (4)
C12—C13 1.475 (5) C3A—H3AA 0.9300
C12—H12A 0.9700 C4A—C5A 1.368 (3)
C12—H12B 0.9700 C5A—C6A 1.373 (3)
C13—H13A 0.9700 C5A—H5AA 0.9300
C6—O2—H2 109.5 N2—C14—H14A 109.3
C4—N1—C3 119.8 (2) C15—C14—H14A 109.3
C4—N1—C11 119.3 (2) N2—C14—H14B 109.3
C3—N1—C11 120.48 (19) C15—C14—H14B 109.3
C1—N2—C17 118.9 (2) H14A—C14—H14B 107.9
C1—N2—C14 120.3 (2) N3—C15—C14 111.4 (2)
C17—N2—C14 108.4 (2) N3—C15—H15A 109.3
C15—N3—C16 110.8 (2) C14—C15—H15A 109.3
C15—N3—C18 110.0 (3) N3—C15—H15B 109.3
C16—N3—C18 112.6 (3) C14—C15—H15B 109.3
C15—N3—H3A 107.7 H15A—C15—H15B 108.0
C16—N3—H3A 107.7 N3—C16—C17 110.3 (2)
C18—N3—H3A 107.7 N3—C16—H16A 109.6
C2—C1—N2 123.5 (2) C17—C16—H16A 109.6
C2—C1—C10 115.7 (2) N3—C16—H16B 109.6
N2—C1—C10 120.7 (2) C17—C16—H16B 109.6
C1—C2—C3 121.8 (2) H16A—C16—H16B 108.1
C1—C2—H2A 119.1 N2—C17—C16 112.2 (2)
C3—C2—H2A 119.1 N2—C17—H17A 109.2
N1—C3—C2 120.5 (2) C16—C17—H17A 109.2
N1—C3—C8 119.3 (2) N2—C17—H17B 109.2
C2—C3—C8 120.3 (2) C16—C17—H17B 109.2
N1—C4—C5 124.0 (2) H17A—C17—H17B 107.9
N1—C4—H4A 118.0 C19—C18—N3 113.3 (3)
C5—C4—H4A 118.0 C19—C18—H18A 108.9
C4—C5—C7 119.5 (2) N3—C18—H18A 108.9
C4—C5—C6 118.4 (2) C19—C18—H18B 108.9
C7—C5—C6 122.1 (2) N3—C18—H18B 108.9
O1—C6—O2 121.3 (3) H18A—C18—H18B 107.7
O1—C6—C5 123.5 (3) C18—C19—H19A 109.5
O2—C6—C5 115.2 (3) C18—C19—H19B 109.5
O3—C7—C5 122.2 (2) H19A—C19—H19B 109.5
O3—C7—C8 121.2 (2) C18—C19—H19C 109.5
C5—C7—C8 116.6 (2) H19A—C19—H19C 109.5
C9—C8—C3 118.4 (2) H19B—C19—H19C 109.5
C9—C8—C7 120.8 (2) O2A—N1A—O3A 123.2 (3)
C3—C8—C7 120.8 (2) O2A—N1A—C2A 118.8 (3)
C10—C9—C8 120.2 (2) O3A—N1A—C2A 118.0 (3)
C10—C9—H9A 119.9 O4A—N2A—O5A 123.8 (2)
C8—C9—H9A 119.9 O4A—N2A—C4A 118.1 (2)
C9—C10—F1 117.8 (2) O5A—N2A—C4A 118.1 (2)
C9—C10—C1 123.5 (3) O7A—N3A—O6A 121.8 (2)
F1—C10—C1 118.6 (2) O7A—N3A—C6A 119.9 (2)
N1—C11—C13 119.6 (2) O6A—N3A—C6A 118.2 (2)
N1—C11—C12 121.4 (2) O1A—C1A—C6A 126.2 (2)
C13—C11—C12 59.7 (2) O1A—C1A—C2A 122.3 (3)
N1—C11—H11A 115.0 C6A—C1A—C2A 111.4 (2)
C13—C11—H11A 115.0 C3A—C2A—C1A 124.9 (2)
C12—C11—H11A 115.0 C3A—C2A—N1A 116.8 (2)
C13—C12—C11 60.0 (2) C1A—C2A—N1A 118.3 (2)
C13—C12—H12A 117.8 C2A—C3A—C4A 119.2 (2)
C11—C12—H12A 117.8 C2A—C3A—H3AA 120.4
C13—C12—H12B 117.8 C4A—C3A—H3AA 120.4
C11—C12—H12B 117.8 C5A—C4A—C3A 120.4 (2)
H12A—C12—H12B 114.9 C5A—C4A—N2A 120.3 (2)
C12—C13—C11 60.36 (19) C3A—C4A—N2A 119.3 (2)
C12—C13—H13A 117.7 C4A—C5A—C6A 120.1 (2)
C11—C13—H13A 117.7 C4A—C5A—H5AA 120.0
C12—C13—H13B 117.7 C6A—C5A—H5AA 120.0
C11—C13—H13B 117.7 C5A—C6A—C1A 123.7 (2)
H13A—C13—H13B 114.9 C5A—C6A—N3A 116.4 (2)
N2—C14—C15 111.8 (2) C1A—C6A—N3A 119.9 (2)
C17—N2—C1—C2 0.3 (4) C3—N1—C11—C12 74.5 (3)
C14—N2—C1—C2 −137.6 (3) N1—C11—C12—C13 108.3 (3)
C17—N2—C1—C10 −176.1 (2) N1—C11—C13—C12 −111.2 (3)
C14—N2—C1—C10 46.0 (3) C1—N2—C14—C15 82.1 (3)
N2—C1—C2—C3 179.7 (2) C17—N2—C14—C15 −59.7 (3)
C10—C1—C2—C3 −3.8 (3) C16—N3—C15—C14 −52.8 (3)
C4—N1—C3—C2 178.3 (2) C18—N3—C15—C14 −177.9 (2)
C11—N1—C3—C2 −8.4 (3) N2—C14—C15—N3 57.1 (3)
C4—N1—C3—C8 −1.5 (3) C15—N3—C16—C17 52.0 (3)
C11—N1—C3—C8 171.75 (19) C18—N3—C16—C17 175.7 (2)
C1—C2—C3—N1 −178.5 (2) C1—N2—C17—C16 −82.7 (3)
C1—C2—C3—C8 1.3 (3) C14—N2—C17—C16 59.7 (3)
C3—N1—C4—C5 −0.1 (3) N3—C16—C17—N2 −57.0 (3)
C11—N1—C4—C5 −173.4 (2) C15—N3—C18—C19 −163.2 (3)
N1—C4—C5—C7 2.5 (3) C16—N3—C18—C19 72.6 (4)
N1—C4—C5—C6 −179.3 (2) O1A—C1A—C2A—C3A 171.7 (3)
C4—C5—C6—O1 7.0 (4) C6A—C1A—C2A—C3A −5.5 (4)
C7—C5—C6—O1 −174.8 (3) O1A—C1A—C2A—N1A −8.2 (4)
C4—C5—C6—O2 −174.1 (2) C6A—C1A—C2A—N1A 174.5 (2)
C7—C5—C6—O2 4.1 (4) O2A—N1A—C2A—C3A 140.3 (3)
C4—C5—C7—O3 176.0 (2) O3A—N1A—C2A—C3A −38.2 (4)
C6—C5—C7—O3 −2.2 (3) O2A—N1A—C2A—C1A −39.8 (4)
C4—C5—C7—C8 −3.0 (3) O3A—N1A—C2A—C1A 141.7 (3)
C6—C5—C7—C8 178.8 (2) C1A—C2A—C3A—C4A 2.8 (4)
N1—C3—C8—C9 −178.78 (19) N1A—C2A—C3A—C4A −177.3 (2)
C2—C3—C8—C9 1.4 (3) C2A—C3A—C4A—C5A 1.4 (4)
N1—C3—C8—C7 0.7 (3) C2A—C3A—C4A—N2A 179.8 (2)
C2—C3—C8—C7 −179.07 (19) O4A—N2A—C4A—C5A −173.7 (3)
O3—C7—C8—C9 2.0 (3) O5A—N2A—C4A—C5A 5.2 (4)
C5—C7—C8—C9 −179.0 (2) O4A—N2A—C4A—C3A 7.9 (4)
O3—C7—C8—C3 −177.5 (2) O5A—N2A—C4A—C3A −173.2 (3)
C5—C7—C8—C3 1.5 (3) C3A—C4A—C5A—C6A −2.1 (4)
C3—C8—C9—C10 −1.4 (3) N2A—C4A—C5A—C6A 179.5 (2)
C7—C8—C9—C10 179.1 (2) C4A—C5A—C6A—C1A −1.3 (4)
C8—C9—C10—F1 176.6 (2) C4A—C5A—C6A—N3A −180.0 (2)
C8—C9—C10—C1 −1.4 (4) O1A—C1A—C6A—C5A −172.4 (3)
C2—C1—C10—C9 3.9 (4) C2A—C1A—C6A—C5A 4.7 (3)
N2—C1—C10—C9 −179.4 (2) O1A—C1A—C6A—N3A 6.3 (4)
C2—C1—C10—F1 −174.0 (2) C2A—C1A—C6A—N3A −176.6 (2)
N2—C1—C10—F1 2.6 (4) O7A—N3A—C6A—C5A −165.8 (3)
C4—N1—C11—C13 −41.8 (3) O6A—N3A—C6A—C5A 11.8 (3)
C3—N1—C11—C13 145.0 (2) O7A—N3A—C6A—C1A 15.4 (4)
C4—N1—C11—C12 −112.3 (3) O6A—N3A—C6A—C1A −167.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O3 0.82 1.78 2.536 (3) 151
N3—H3A···O1A 0.91 1.87 2.724 (3) 155
N3—H3A···O7A 0.91 2.38 3.024 (3) 128
C11—H11A···O3i 0.98 2.55 3.385 (3) 144
C15—H15B···O1ii 0.97 2.35 3.312 (3) 169
C17—H17B···O3Aiii 0.97 2.56 3.458 (4) 154
C3A—H3AA···O3iv 0.93 2.55 3.331 (3) 142
C9—H9A···O4Av 0.93 2.58 3.495 (3) 170
C14—H14B···O5Avi 0.97 2.60 3.517 (4) 157
C18—H18A···O5Avii 0.97 2.50 3.451 (5) 167

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z; (iii) −x, −y+1, −z+1; (iv) x, y, z+1; (v) x, y, z−1; (vi) −x, −y, −z+1; (vii) −x+1, −y, −z+1.

Table 2 Cg···Cg π stacking interactions, Cg2 and Cg4 are the centroids of rings N1/C3/C8/C7/C5/C4 and C1/C2/C3/C8/C9/C10; [Symmetry codes: (i) -x, 1-y, -z; (ii) 1-x, 1-y, -z;]

CgI···CgJ Cg···Cg (Å) CgI Perp (Å) Cgj Perp (Å) Slippage (Å)
Cg2···Cg2i 3.5785 (13) -3.3834 (9) -3.3834 (9) 1.16 (5)
Cg2···Cg2ii 3.7451 (12) -3.6091 (9) 3.6090 (9) 1.00 (0)
Cg2···Cg4ii 3.6587 (13) -3.3748 (9) -3.4114 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5451).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bhanot, S. K., Singh, M. & Chatterjee, N. R. (2001). Curr. Pharm. Des. 7, 313–337. [DOI] [PubMed]
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Hu, R.-D. & Yu, Q.-S. (2005). Z. Krystallogr. New Cryst. Struct. 220, 171–172.
  5. Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1738–o1739. [DOI] [PMC free article] [PubMed]
  6. Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010a). Acta Cryst. E66, o411–o412. [DOI] [PMC free article] [PubMed]
  7. Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010b). Acta Cryst. E66, o347–o348. [DOI] [PMC free article] [PubMed]
  8. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon,England.
  9. Recillas-Mota, J., Flores-Alamo, M., Moreno-Esparza, R. & Gracia-Mora, J. (2007). Acta Cryst. E63, m3030–m3031.
  10. Scholar, E. M. (2003). Am. J. Pharm. Educ. 66, 165–172.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sun, H.-X., Li, Y. & Pan, Y.-J. (2004). Acta Cryst. E60, o1694–o1696.
  13. Wang, Y., Sun, L.-W., Wang, W. & Yan, L.-H. (2005). Chin. J. Struct. Chem. 24, 1359–1362.
  14. Zou, H.-I., Chen, Z.-F. & Liang, H. (2005). J. Guangxi Nor. Univ. Nat. Sci. Ed. 23, 57–60.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681100170X/bt5451sup1.cif

e-67-0o432-sup1.cif (26.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100170X/bt5451Isup2.hkl

e-67-0o432-Isup2.hkl (266.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES