Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):m210. doi: 10.1107/S1600536811001292

Di-n-butyl­bis­(thio­cyanato-κN)(1,10-phenanthroline-κ2 N,N′)tin(IV)

Ezzatollah Najafi a, Mostafa M Amini a, Seik Weng Ng b,*
PMCID: PMC3051678  PMID: 21522873

Abstract

In the asymmetric unit of the title compound, [Sn(C4H9)2(NCS)2(C12H8N2)], there are two independent mol­ecules, both lying on a twofold rotation axis. The axis passes through the mid-point of the 1,10 and 5,6 bonds of the N-heterocycle and through the Sn atom. The Sn atoms show a slightly distorted SnC2N4 octa­hedral coordination.

Related literature

For the di-n-butyl­tin dichloride adduct, see: Ganis et al. (1983).graphic file with name e-67-0m210-scheme1.jpg

Experimental

Crystal data

  • [Sn(C4H9)2(NCS)2(C12H8N2]

  • M r = 529.28

  • Monoclinic, Inline graphic

  • a = 15.0008 (3) Å

  • b = 10.5220 (2) Å

  • c = 15.8359 (3) Å

  • β = 107.452 (2)°

  • V = 2384.46 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Agilent Technologies SuperNova diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010) T min = 0.703, T max = 0.884

  • 11981 measured reflections

  • 5323 independent reflections

  • 4659 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.070

  • S = 1.02

  • 5323 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811001292/bt5460sup1.cif

e-67-0m210-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001292/bt5460Isup2.hkl

e-67-0m210-Isup2.hkl (260.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Diorganotin dihalides/pseudohalides form a number of adducts with 1,10-phenanthroline. The dihalides adducts have been better studied, particularly with dibutyltin dihalides adducts; the di-n-butyltin dichloride adduct was reported a long time ago (Ganis et al., 1983). The diisothiocyanate adduct (Scheme I, Fig. 1 & 2), also features the chelated tin atom in an octahedral geometry. The two independent molecules both lie on a twofold rotation axis; the axis passes through the mid-point of the 1,10 and 5,6 pairs of atoms of the N-heterocycle, and it relates one butyl group to the other (as well as one isothiocyanate group to the other).

Experimental

Dibutyltin diisothiocyanate and 1,10-phenanthroline (1 mmol) were loaded into a convection tube. The tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement

H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of the two independent molecules of dibutyldiisothiocyanato(1,10-phenanthroline)tin at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Sn(C4H9)2(NCS)2(C12H8N2] F(000) = 1072
Mr = 529.28 Dx = 1.474 Mg m3
Monoclinic, P2/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yac Cell parameters from 10240 reflections
a = 15.0008 (3) Å θ = 2.2–29.4°
b = 10.5220 (2) Å µ = 1.26 mm1
c = 15.8359 (3) Å T = 100 K
β = 107.452 (2)° Prism, colorless
V = 2384.46 (8) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Agilent Technologies SuperNova (Dual, Cu at zero) diffractometer with an Atlas detector 5323 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 4659 reflections with I > 2σ(I)
Mirror Rint = 0.029
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.2°
ω scans h = −19→18
Absorption correction: multi-scan CrysAlis PRO (Agilent Technologies, 2010) k = −13→13
Tmin = 0.703, Tmax = 0.884 l = −13→20
11981 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.2915P] where P = (Fo2 + 2Fc2)/3
5323 reflections (Δ/σ)max = 0.001
263 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.61 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.7500 0.646740 (19) 0.2500 0.01691 (7)
Sn2 0.7500 0.61402 (2) 0.7500 0.01760 (7)
S1 0.80427 (5) 0.90208 (6) 0.00369 (4) 0.02442 (15)
S2 1.01982 (5) 0.34705 (6) 0.92845 (5) 0.02964 (16)
N1 0.76659 (13) 0.46325 (17) 0.16982 (12) 0.0186 (4)
N2 0.76347 (15) 0.7767 (2) 0.14184 (14) 0.0296 (5)
N3 0.83931 (12) 0.79303 (17) 0.80419 (12) 0.0168 (4)
N4 0.87303 (16) 0.4872 (2) 0.82567 (14) 0.0328 (5)
C1 0.60205 (16) 0.6504 (2) 0.19698 (17) 0.0232 (5)
H1A 0.5832 0.5919 0.1457 0.028*
H1B 0.5745 0.6180 0.2423 0.028*
C2 0.56148 (17) 0.7817 (2) 0.16729 (18) 0.0291 (6)
H2A 0.5763 0.8055 0.1125 0.035*
H2B 0.5917 0.8446 0.2135 0.035*
C3 0.45576 (19) 0.7876 (3) 0.14991 (18) 0.0394 (7)
H3A 0.4255 0.7214 0.1063 0.047*
H3B 0.4409 0.7696 0.2056 0.047*
C4 0.4165 (2) 0.9175 (3) 0.1149 (2) 0.0578 (10)
H4A 0.3488 0.9181 0.1049 0.087*
H4B 0.4297 0.9346 0.0590 0.087*
H4C 0.4458 0.9831 0.1582 0.087*
C5 0.78497 (16) 0.4644 (2) 0.09300 (15) 0.0238 (5)
H5 0.7912 0.5440 0.0670 0.029*
C6 0.79562 (19) 0.3532 (2) 0.04866 (17) 0.0292 (6)
H6 0.8094 0.3574 −0.0060 0.035*
C7 0.78590 (17) 0.2385 (2) 0.08520 (17) 0.0303 (6)
H7 0.7913 0.1621 0.0551 0.036*
C8 0.76801 (16) 0.2333 (2) 0.16709 (17) 0.0246 (6)
C9 0.75910 (15) 0.3498 (2) 0.20787 (15) 0.0184 (5)
C10 0.7587 (2) 0.1170 (2) 0.21069 (19) 0.0354 (7)
H10 0.7649 0.0383 0.1836 0.042*
C11 0.78116 (16) 0.8286 (2) 0.08429 (15) 0.0191 (5)
C12 0.70141 (16) 0.5978 (2) 0.86263 (15) 0.0207 (5)
H12A 0.6957 0.5064 0.8749 0.025*
H12B 0.7494 0.6343 0.9142 0.025*
C13 0.60877 (17) 0.6616 (2) 0.85540 (16) 0.0245 (5)
H13A 0.5619 0.6324 0.8004 0.029*
H13B 0.6162 0.7545 0.8505 0.029*
C14 0.57178 (19) 0.6351 (2) 0.93319 (17) 0.0289 (6)
H14A 0.5663 0.5421 0.9397 0.035*
H14B 0.6171 0.6675 0.9881 0.035*
C15 0.47828 (19) 0.6955 (3) 0.92244 (19) 0.0389 (7)
H15A 0.4576 0.6755 0.9740 0.058*
H15B 0.4327 0.6626 0.8688 0.058*
H15C 0.4836 0.7879 0.9175 0.058*
C16 0.92697 (16) 0.7912 (2) 0.85792 (15) 0.0217 (5)
H16 0.9561 0.7116 0.8764 0.026*
C17 0.97730 (18) 0.9027 (2) 0.88790 (16) 0.0262 (6)
H17 1.0397 0.8983 0.9260 0.031*
C18 0.93621 (17) 1.0177 (2) 0.86206 (16) 0.0262 (6)
H18 0.9701 1.0939 0.8815 0.031*
C19 0.84303 (17) 1.0231 (2) 0.80631 (16) 0.0224 (5)
C20 0.79742 (15) 0.9072 (2) 0.77864 (14) 0.0170 (5)
C21 0.79440 (18) 1.1396 (2) 0.77720 (18) 0.0282 (6)
H21 0.8249 1.2182 0.7964 0.034*
C22 0.93256 (18) 0.4328 (2) 0.86806 (16) 0.0214 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.01948 (13) 0.01283 (11) 0.01867 (12) 0.000 0.00609 (9) 0.000
Sn2 0.01997 (13) 0.01451 (12) 0.01626 (12) 0.000 0.00229 (9) 0.000
S1 0.0332 (4) 0.0204 (3) 0.0224 (3) 0.0006 (3) 0.0125 (3) 0.0011 (2)
S2 0.0255 (3) 0.0243 (3) 0.0335 (4) 0.0060 (3) 0.0005 (3) 0.0004 (3)
N1 0.0181 (10) 0.0161 (9) 0.0203 (10) 0.0001 (8) 0.0039 (8) −0.0006 (8)
N2 0.0296 (12) 0.0284 (11) 0.0316 (12) 0.0009 (10) 0.0105 (10) 0.0061 (10)
N3 0.0178 (9) 0.0175 (9) 0.0155 (9) 0.0000 (8) 0.0056 (8) −0.0003 (8)
N4 0.0346 (13) 0.0373 (13) 0.0237 (11) 0.0053 (11) 0.0043 (10) 0.0009 (10)
C1 0.0183 (12) 0.0224 (12) 0.0282 (13) 0.0032 (10) 0.0058 (10) −0.0001 (10)
C2 0.0286 (14) 0.0261 (13) 0.0307 (14) 0.0108 (11) 0.0062 (12) 0.0040 (11)
C3 0.0334 (15) 0.0569 (19) 0.0293 (15) 0.0216 (14) 0.0117 (12) 0.0055 (14)
C4 0.059 (2) 0.075 (2) 0.0418 (19) 0.044 (2) 0.0178 (17) 0.0180 (18)
C5 0.0262 (13) 0.0254 (12) 0.0188 (12) 0.0032 (11) 0.0052 (10) 0.0015 (10)
C6 0.0326 (14) 0.0309 (14) 0.0253 (14) 0.0074 (12) 0.0104 (12) −0.0034 (11)
C7 0.0290 (14) 0.0266 (13) 0.0341 (15) 0.0083 (11) 0.0076 (12) −0.0107 (12)
C8 0.0229 (12) 0.0172 (11) 0.0320 (14) 0.0025 (10) 0.0055 (11) −0.0055 (10)
C9 0.0123 (11) 0.0167 (11) 0.0246 (13) −0.0002 (9) 0.0030 (10) −0.0002 (9)
C10 0.0415 (17) 0.0161 (11) 0.0488 (18) 0.0020 (12) 0.0139 (15) −0.0046 (12)
C11 0.0187 (12) 0.0148 (10) 0.0220 (12) 0.0013 (9) 0.0035 (10) −0.0045 (10)
C12 0.0234 (12) 0.0228 (12) 0.0154 (11) −0.0037 (10) 0.0050 (10) 0.0027 (10)
C13 0.0246 (13) 0.0272 (13) 0.0211 (12) −0.0022 (11) 0.0060 (11) 0.0017 (10)
C14 0.0300 (14) 0.0351 (14) 0.0216 (13) −0.0056 (12) 0.0078 (11) −0.0002 (11)
C15 0.0296 (15) 0.0591 (19) 0.0305 (15) −0.0067 (14) 0.0128 (12) −0.0019 (14)
C16 0.0209 (12) 0.0244 (12) 0.0193 (12) 0.0000 (10) 0.0054 (10) −0.0028 (10)
C17 0.0213 (12) 0.0344 (14) 0.0218 (13) −0.0055 (11) 0.0050 (10) −0.0078 (11)
C18 0.0286 (13) 0.0237 (12) 0.0307 (14) −0.0119 (11) 0.0154 (11) −0.0097 (11)
C19 0.0265 (13) 0.0209 (11) 0.0248 (12) −0.0033 (10) 0.0151 (11) −0.0025 (10)
C20 0.0206 (12) 0.0162 (11) 0.0167 (11) −0.0008 (9) 0.0092 (10) −0.0022 (9)
C21 0.0358 (15) 0.0170 (11) 0.0386 (16) −0.0042 (10) 0.0217 (13) −0.0037 (10)
C22 0.0305 (14) 0.0147 (11) 0.0240 (13) −0.0035 (11) 0.0157 (11) −0.0056 (10)

Geometric parameters (Å, °)

Sn1—C1i 2.125 (2) C5—H5 0.9500
Sn1—C1 2.125 (2) C6—C7 1.365 (4)
Sn1—N2i 2.248 (2) C6—H6 0.9500
Sn1—N2 2.248 (2) C7—C8 1.402 (4)
Sn1—N1 2.3646 (19) C7—H7 0.9500
Sn1—N1i 2.3646 (19) C8—C9 1.410 (3)
Sn2—C12ii 2.126 (2) C8—C10 1.433 (4)
Sn2—C12 2.126 (2) C9—C9i 1.440 (5)
Sn2—N4ii 2.302 (2) C10—C10i 1.347 (6)
Sn2—N4 2.302 (2) C10—H10 0.9500
Sn2—N3 2.3215 (18) C12—C13 1.516 (3)
Sn2—N3ii 2.3215 (18) C12—H12A 0.9900
S1—C11 1.616 (3) C12—H12B 0.9900
S2—C22 1.641 (3) C13—C14 1.521 (4)
N1—C5 1.326 (3) C13—H13A 0.9900
N1—C9 1.357 (3) C13—H13B 0.9900
N2—C11 1.159 (3) C14—C15 1.502 (4)
N3—C16 1.335 (3) C14—H14A 0.9900
N3—C20 1.360 (3) C14—H14B 0.9900
N4—C22 1.102 (3) C15—H15A 0.9800
C1—C2 1.526 (3) C15—H15B 0.9800
C1—H1A 0.9900 C15—H15C 0.9800
C1—H1B 0.9900 C16—C17 1.399 (3)
C2—C3 1.527 (4) C16—H16 0.9500
C2—H2A 0.9900 C17—C18 1.364 (3)
C2—H2B 0.9900 C17—H17 0.9500
C3—C4 1.525 (4) C18—C19 1.413 (3)
C3—H3A 0.9900 C18—H18 0.9500
C3—H3B 0.9900 C19—C20 1.403 (3)
C4—H4A 0.9800 C19—C21 1.430 (3)
C4—H4B 0.9800 C20—C20ii 1.440 (4)
C4—H4C 0.9800 C21—C21ii 1.352 (5)
C5—C6 1.398 (3) C21—H21 0.9500
C1i—Sn1—C1 177.93 (12) N1—C5—C6 122.7 (2)
C1i—Sn1—N2i 90.57 (9) N1—C5—H5 118.7
C1—Sn1—N2i 88.18 (8) C6—C5—H5 118.7
C1i—Sn1—N2 88.18 (8) C7—C6—C5 119.0 (3)
C1—Sn1—N2 90.57 (9) C7—C6—H6 120.5
N2i—Sn1—N2 105.05 (11) C5—C6—H6 120.5
C1i—Sn1—N1 87.78 (8) C6—C7—C8 120.1 (2)
C1—Sn1—N1 93.91 (8) C6—C7—H7 120.0
N2i—Sn1—N1 162.54 (7) C8—C7—H7 120.0
N2—Sn1—N1 92.27 (7) C7—C8—C9 117.4 (2)
C1i—Sn1—N1i 93.91 (8) C7—C8—C10 123.5 (2)
C1—Sn1—N1i 87.78 (8) C9—C8—C10 119.1 (2)
N2i—Sn1—N1i 92.27 (7) N1—C9—C8 122.0 (2)
N2—Sn1—N1i 162.54 (7) N1—C9—C9i 118.39 (13)
N1—Sn1—N1i 70.53 (9) C8—C9—C9i 119.65 (15)
C12ii—Sn2—C12 170.80 (13) C10i—C10—C8 121.30 (15)
C12ii—Sn2—N4ii 86.55 (8) C10i—C10—H10 119.4
C12—Sn2—N4ii 88.12 (8) C8—C10—H10 119.4
C12ii—Sn2—N4 88.12 (8) N2—C11—S1 179.1 (2)
C12—Sn2—N4 86.55 (8) C13—C12—Sn2 115.99 (15)
N4ii—Sn2—N4 109.11 (11) C13—C12—H12A 108.3
C12ii—Sn2—N3 94.02 (8) Sn2—C12—H12A 108.3
C12—Sn2—N3 93.44 (8) C13—C12—H12B 108.3
N4ii—Sn2—N3 161.22 (7) Sn2—C12—H12B 108.3
N4—Sn2—N3 89.68 (7) H12A—C12—H12B 107.4
C12ii—Sn2—N3ii 93.44 (8) C12—C13—C14 114.0 (2)
C12—Sn2—N3ii 94.02 (8) C12—C13—H13A 108.8
N4ii—Sn2—N3ii 89.68 (7) C14—C13—H13A 108.8
N4—Sn2—N3ii 161.22 (7) C12—C13—H13B 108.8
N3—Sn2—N3ii 71.54 (9) C14—C13—H13B 108.8
C5—N1—C9 118.9 (2) H13A—C13—H13B 107.6
C5—N1—Sn1 124.72 (15) C15—C14—C13 112.7 (2)
C9—N1—Sn1 116.34 (15) C15—C14—H14A 109.1
C11—N2—Sn1 168.4 (2) C13—C14—H14A 109.1
C16—N3—C20 118.75 (19) C15—C14—H14B 109.1
C16—N3—Sn2 124.96 (15) C13—C14—H14B 109.1
C20—N3—Sn2 116.29 (14) H14A—C14—H14B 107.8
C22—N4—Sn2 173.9 (2) C14—C15—H15A 109.5
C2—C1—Sn1 114.26 (17) C14—C15—H15B 109.5
C2—C1—H1A 108.7 H15A—C15—H15B 109.5
Sn1—C1—H1A 108.7 C14—C15—H15C 109.5
C2—C1—H1B 108.7 H15A—C15—H15C 109.5
Sn1—C1—H1B 108.7 H15B—C15—H15C 109.5
H1A—C1—H1B 107.6 N3—C16—C17 122.2 (2)
C1—C2—C3 112.9 (2) N3—C16—H16 118.9
C1—C2—H2A 109.0 C17—C16—H16 118.9
C3—C2—H2A 109.0 C18—C17—C16 119.5 (2)
C1—C2—H2B 109.0 C18—C17—H17 120.2
C3—C2—H2B 109.0 C16—C17—H17 120.2
H2A—C2—H2B 107.8 C17—C18—C19 119.8 (2)
C4—C3—C2 111.7 (3) C17—C18—H18 120.1
C4—C3—H3A 109.3 C19—C18—H18 120.1
C2—C3—H3A 109.3 C20—C19—C18 117.3 (2)
C4—C3—H3B 109.3 C20—C19—C21 119.4 (2)
C2—C3—H3B 109.3 C18—C19—C21 123.3 (2)
H3A—C3—H3B 107.9 N3—C20—C19 122.4 (2)
C3—C4—H4A 109.5 N3—C20—C20ii 117.94 (12)
C3—C4—H4B 109.5 C19—C20—C20ii 119.61 (14)
H4A—C4—H4B 109.5 C21ii—C21—C19 121.02 (14)
C3—C4—H4C 109.5 C21ii—C21—H21 119.5
H4A—C4—H4C 109.5 C19—C21—H21 119.5
H4B—C4—H4C 109.5 N4—C22—S2 177.7 (2)
C1i—Sn1—N1—C5 −83.32 (19) C6—C7—C8—C9 1.1 (4)
C1—Sn1—N1—C5 95.49 (18) C6—C7—C8—C10 −178.7 (3)
N2i—Sn1—N1—C5 −168.1 (2) C5—N1—C9—C8 −1.6 (3)
N2—Sn1—N1—C5 4.76 (18) Sn1—N1—C9—C8 −179.73 (16)
N1i—Sn1—N1—C5 −178.3 (2) C5—N1—C9—C9i 178.8 (2)
C1i—Sn1—N1—C9 94.70 (16) Sn1—N1—C9—C9i 0.7 (3)
C1—Sn1—N1—C9 −86.49 (16) C7—C8—C9—N1 0.5 (3)
N2i—Sn1—N1—C9 9.9 (3) C10—C8—C9—N1 −179.6 (2)
N2—Sn1—N1—C9 −177.21 (15) C7—C8—C9—C9i −179.9 (3)
N1i—Sn1—N1—C9 −0.24 (11) C10—C8—C9—C9i 0.0 (4)
C1i—Sn1—N2—C11 51.6 (10) C7—C8—C10—C10i −179.9 (3)
C1—Sn1—N2—C11 −130.1 (10) C9—C8—C10—C10i 0.3 (5)
N2i—Sn1—N2—C11 141.7 (10) N4ii—Sn2—C12—C13 −67.64 (18)
N1—Sn1—N2—C11 −36.1 (10) N4—Sn2—C12—C13 −176.91 (18)
N1i—Sn1—N2—C11 −45.7 (11) N3—Sn2—C12—C13 93.62 (17)
C12ii—Sn2—N3—C16 −88.13 (19) N3ii—Sn2—C12—C13 21.90 (18)
C12—Sn2—N3—C16 86.48 (19) Sn2—C12—C13—C14 173.58 (16)
N4ii—Sn2—N3—C16 −179.2 (2) C12—C13—C14—C15 −177.8 (2)
N4—Sn2—N3—C16 −0.05 (18) C20—N3—C16—C17 −0.7 (3)
N3ii—Sn2—N3—C16 179.6 (2) Sn2—N3—C16—C17 179.63 (18)
C12ii—Sn2—N3—C20 92.20 (16) N3—C16—C17—C18 0.2 (4)
C12—Sn2—N3—C20 −93.18 (16) C16—C17—C18—C19 0.8 (4)
N4ii—Sn2—N3—C20 1.1 (3) C17—C18—C19—C20 −1.2 (4)
N4—Sn2—N3—C20 −179.71 (16) C17—C18—C19—C21 179.1 (2)
N3ii—Sn2—N3—C20 −0.09 (11) C16—N3—C20—C19 0.3 (3)
N2i—Sn1—C1—C2 62.44 (19) Sn2—N3—C20—C19 179.99 (17)
N2—Sn1—C1—C2 −42.61 (19) C16—N3—C20—C20ii −179.4 (2)
N1—Sn1—C1—C2 −134.92 (19) Sn2—N3—C20—C20ii 0.3 (3)
N1i—Sn1—C1—C2 154.78 (19) C18—C19—C20—N3 0.6 (3)
Sn1—C1—C2—C3 −166.65 (18) C21—C19—C20—N3 −179.6 (2)
C1—C2—C3—C4 −176.4 (2) C18—C19—C20—C20ii −179.6 (3)
C9—N1—C5—C6 1.0 (3) C21—C19—C20—C20ii 0.1 (4)
Sn1—N1—C5—C6 178.97 (18) C20—C19—C21—C21ii −0.7 (5)
N1—C5—C6—C7 0.6 (4) C18—C19—C21—C21ii 179.1 (3)
C5—C6—C7—C8 −1.7 (4)

Symmetry codes: (i) −x+3/2, y, −z+1/2; (ii) −x+3/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5460).

References

  1. Agilent Technologies (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Ganis, P., Peruzzo, V. & Valle, G. (1983). J. Organomet. Chem. 256, 245–250.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811001292/bt5460sup1.cif

e-67-0m210-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001292/bt5460Isup2.hkl

e-67-0m210-Isup2.hkl (260.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES