Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 8;67(Pt 2):o281. doi: 10.1107/S1600536810054358

5-Cyclo­hexyl-3-methyl­sulfinyl-2-phenyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC3051680  PMID: 21522973

Abstract

In the title compound, C21H22O2S, the cyclo­hexyl ring adopts a chair conformation while the phenyl ring makes a dihedral angle of 33.38 (5)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For our previous structural studies of related 3-methyl­sulfinyl-2-phenyl-1-benzofuran derivatives, see: Choi et al. (2007, 2008).graphic file with name e-67-0o281-scheme1.jpg

Experimental

Crystal data

  • C21H22O2S

  • M r = 338.45

  • Monoclinic, Inline graphic

  • a = 9.9864 (2) Å

  • b = 17.1899 (3) Å

  • c = 11.0792 (2) Å

  • β = 113.540 (1)°

  • V = 1743.64 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.30 × 0.23 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.944, T max = 0.972

  • 16429 measured reflections

  • 4009 independent reflections

  • 3171 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.103

  • S = 1.04

  • 4009 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810054358/xu5130sup1.cif

e-67-0o281-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054358/xu5130Isup2.hkl

e-67-0o281-Isup2.hkl (196.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.50 3.429 (2) 167
C21—H21B⋯O2ii 0.98 2.33 3.290 (2) 165
C19—H19⋯Cgii 0.95 2.59 3.392 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Many compounds possessing a benzofuran ring system have received much attention in view of their important pharmacological properties such as antifungal, antimicrobial, antitumor and antiviral activities (Aslam et al., 2006; Galal et al., 2009; Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As part of our ongoing program of the substituent effect on the solid state structures of 3-methylsulfinyl-2-phenyl-1-benzofuran analogues (Choi et al., 2007, 2008), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.025 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring is in the chair form. The phenyl ring makes a dihedral angle of33.38 (5)° with the mean plane of the benzofuran ring. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds; the first one between a benzene H atom and the oxygen of the S═O unit (Table 1; C5—H5···O2i), and the second one between a methyl H atom and the oxygen of the S═O unit (Table 1; C21—H21B···O2ii). The crystal packing (Fig. 2) is further stabilized by an intermolecular C–H···π interaction between the phenyl H atom and the benzene ring (Table 1; C19—H19···Cgii, Cg is the centroid of the C2–C7 benzene ring).

Experimental

77% 3-Chloroperoxybenzoic acid (269 mg, 1.2 mmol) was added in small portions to a stirred solution of 5-cyclohexyl-3-methylsulfanyl-2-phenyl-1-benzofuran (386 mg, 1.2 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution, and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 445-446 K; Rf = 0.55 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl, methine and methylene, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C–H···O and C–H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the centroid of the C2-C7 benzene ring. [Symmetry codes: (i) - x + 1, y + 1/2, - z + 1/2; (ii) x, - y + 1/2, z + 1/2 ; (iii) - x + 1, y - 1/2, - z + 1/2; (v) x, - y + 1/2, z - 1/2.]

Crystal data

C21H22O2S F(000) = 720
Mr = 338.45 Dx = 1.289 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5143 reflections
a = 9.9864 (2) Å θ = 2.3–27.2°
b = 17.1899 (3) Å µ = 0.20 mm1
c = 11.0792 (2) Å T = 173 K
β = 113.540 (1)° Block, colourless
V = 1743.64 (6) Å3 0.30 × 0.23 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 4009 independent reflections
Radiation source: rotating anode 3171 reflections with I > 2σ(I)
graphite multilayer Rint = 0.036
Detector resolution: 10.0 pixels mm-1 θmax = 27.5°, θmin = 2.2°
φ and ω scans h = −11→12
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −20→22
Tmin = 0.944, Tmax = 0.972 l = −14→14
16429 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: difference Fourier map
wR(F2) = 0.103 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.5848P] where P = (Fo2 + 2Fc2)/3
4009 reflections (Δ/σ)max = 0.001
218 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.53993 (4) 0.23636 (2) 0.45818 (4) 0.02703 (12)
O1 0.26640 (10) 0.41250 (6) 0.40179 (10) 0.0251 (2)
O2 0.59564 (12) 0.22776 (7) 0.35222 (11) 0.0338 (3)
C1 0.44415 (16) 0.32524 (8) 0.42968 (14) 0.0232 (3)
C2 0.48052 (15) 0.39562 (8) 0.37720 (13) 0.0228 (3)
C3 0.58967 (16) 0.41863 (9) 0.33612 (15) 0.0264 (3)
H3 0.6672 0.3843 0.3439 0.032*
C4 0.58291 (16) 0.49283 (9) 0.28359 (15) 0.0263 (3)
C5 0.46893 (16) 0.54323 (9) 0.27576 (15) 0.0272 (3)
H5 0.4672 0.5942 0.2421 0.033*
C6 0.35948 (16) 0.52148 (9) 0.31502 (14) 0.0262 (3)
H6 0.2826 0.5559 0.3090 0.031*
C7 0.36791 (15) 0.44686 (8) 0.36363 (14) 0.0229 (3)
C8 0.31508 (16) 0.33785 (8) 0.44035 (14) 0.0235 (3)
C9 0.69304 (18) 0.51956 (9) 0.23033 (16) 0.0305 (3)
H9 0.6597 0.5715 0.1882 0.037*
C10 0.84676 (19) 0.53061 (12) 0.33740 (18) 0.0432 (5)
H10A 0.8423 0.5662 0.4060 0.052*
H10B 0.8848 0.4799 0.3794 0.052*
C11 0.9503 (2) 0.56417 (13) 0.2798 (2) 0.0543 (6)
H11A 0.9179 0.6173 0.2462 0.065*
H11B 1.0498 0.5680 0.3501 0.065*
C12 0.9547 (2) 0.51392 (12) 0.16882 (18) 0.0424 (4)
H12A 1.0142 0.5402 0.1277 0.051*
H12B 1.0021 0.4637 0.2053 0.051*
C13 0.8030 (2) 0.49870 (13) 0.06471 (18) 0.0437 (4)
H13A 0.8096 0.4616 −0.0010 0.052*
H13B 0.7615 0.5479 0.0185 0.052*
C14 0.70227 (19) 0.46570 (11) 0.12466 (16) 0.0369 (4)
H14A 0.7390 0.4142 0.1639 0.044*
H14B 0.6034 0.4584 0.0546 0.044*
C15 0.21597 (16) 0.28936 (9) 0.47555 (14) 0.0242 (3)
C16 0.06542 (16) 0.30137 (10) 0.41243 (15) 0.0307 (4)
H16 0.0290 0.3419 0.3493 0.037*
C17 −0.03071 (18) 0.25502 (10) 0.44095 (17) 0.0347 (4)
H17 −0.1329 0.2638 0.3980 0.042*
C18 0.02156 (18) 0.19558 (10) 0.53227 (17) 0.0348 (4)
H18 −0.0447 0.1632 0.5511 0.042*
C19 0.17003 (19) 0.18356 (10) 0.59575 (16) 0.0343 (4)
H19 0.2056 0.1427 0.6582 0.041*
C20 0.26770 (17) 0.23051 (10) 0.56922 (15) 0.0300 (3)
H20 0.3698 0.2226 0.6149 0.036*
C21 0.69381 (18) 0.26628 (10) 0.60208 (16) 0.0351 (4)
H21A 0.7661 0.2243 0.6303 0.053*
H21B 0.6617 0.2782 0.6729 0.053*
H21C 0.7378 0.3128 0.5818 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0289 (2) 0.0206 (2) 0.0359 (2) 0.00143 (15) 0.01754 (16) 0.00194 (15)
O1 0.0231 (5) 0.0232 (5) 0.0314 (5) 0.0003 (4) 0.0135 (4) 0.0002 (4)
O2 0.0381 (6) 0.0321 (6) 0.0374 (6) 0.0024 (5) 0.0215 (5) −0.0055 (5)
C1 0.0230 (7) 0.0216 (7) 0.0257 (7) −0.0010 (6) 0.0106 (6) −0.0007 (6)
C2 0.0231 (7) 0.0205 (7) 0.0244 (7) −0.0007 (6) 0.0090 (6) −0.0005 (6)
C3 0.0236 (7) 0.0244 (8) 0.0331 (8) 0.0022 (6) 0.0132 (6) 0.0009 (6)
C4 0.0258 (8) 0.0245 (8) 0.0302 (7) −0.0031 (6) 0.0129 (6) −0.0007 (6)
C5 0.0288 (8) 0.0212 (7) 0.0314 (8) −0.0012 (6) 0.0120 (6) 0.0010 (6)
C6 0.0252 (7) 0.0221 (7) 0.0313 (8) 0.0035 (6) 0.0111 (6) −0.0005 (6)
C7 0.0221 (7) 0.0232 (7) 0.0244 (7) −0.0023 (6) 0.0103 (6) −0.0024 (6)
C8 0.0240 (7) 0.0224 (7) 0.0231 (7) 0.0000 (6) 0.0085 (6) −0.0004 (6)
C9 0.0322 (8) 0.0226 (8) 0.0430 (9) 0.0012 (6) 0.0216 (7) 0.0057 (7)
C10 0.0381 (10) 0.0536 (12) 0.0460 (10) −0.0186 (9) 0.0253 (8) −0.0201 (9)
C11 0.0453 (11) 0.0603 (13) 0.0703 (14) −0.0240 (10) 0.0368 (10) −0.0203 (11)
C12 0.0360 (9) 0.0549 (12) 0.0450 (10) 0.0003 (8) 0.0254 (8) 0.0062 (9)
C13 0.0409 (10) 0.0590 (12) 0.0369 (9) 0.0063 (9) 0.0214 (8) 0.0103 (9)
C14 0.0333 (9) 0.0461 (11) 0.0309 (8) −0.0042 (8) 0.0125 (7) −0.0002 (7)
C15 0.0249 (7) 0.0258 (7) 0.0244 (7) −0.0020 (6) 0.0124 (6) −0.0022 (6)
C16 0.0261 (8) 0.0333 (9) 0.0327 (8) 0.0013 (7) 0.0117 (6) 0.0057 (7)
C17 0.0240 (8) 0.0410 (10) 0.0392 (9) −0.0017 (7) 0.0127 (7) 0.0028 (7)
C18 0.0339 (9) 0.0363 (9) 0.0401 (9) −0.0081 (7) 0.0210 (7) 0.0005 (7)
C19 0.0372 (9) 0.0352 (9) 0.0342 (8) 0.0018 (7) 0.0182 (7) 0.0090 (7)
C20 0.0256 (8) 0.0364 (9) 0.0289 (8) 0.0016 (7) 0.0118 (6) 0.0054 (7)
C21 0.0333 (9) 0.0401 (10) 0.0312 (8) 0.0106 (7) 0.0121 (7) 0.0043 (7)

Geometric parameters (Å, °)

S1—O2 1.4938 (12) C11—H11A 0.9900
S1—C1 1.7628 (15) C11—H11B 0.9900
S1—C21 1.7919 (17) C12—C13 1.516 (3)
O1—C7 1.3775 (17) C12—H12A 0.9900
O1—C8 1.3783 (17) C12—H12B 0.9900
C1—C8 1.358 (2) C13—C14 1.519 (2)
C1—C2 1.450 (2) C13—H13A 0.9900
C2—C7 1.389 (2) C13—H13B 0.9900
C2—C3 1.396 (2) C14—H14A 0.9900
C3—C4 1.392 (2) C14—H14B 0.9900
C3—H3 0.9500 C15—C20 1.392 (2)
C4—C5 1.405 (2) C15—C16 1.397 (2)
C4—C9 1.512 (2) C16—C17 1.378 (2)
C5—C6 1.380 (2) C16—H16 0.9500
C5—H5 0.9500 C17—C18 1.385 (2)
C6—C7 1.381 (2) C17—H17 0.9500
C6—H6 0.9500 C18—C19 1.379 (2)
C8—C15 1.461 (2) C18—H18 0.9500
C9—C14 1.524 (2) C19—C20 1.385 (2)
C9—C10 1.531 (2) C19—H19 0.9500
C9—H9 1.0000 C20—H20 0.9500
C10—C11 1.528 (2) C21—H21A 0.9800
C10—H10A 0.9900 C21—H21B 0.9800
C10—H10B 0.9900 C21—H21C 0.9800
C11—C12 1.517 (3)
O2—S1—C1 106.90 (7) C10—C11—H11B 109.3
O2—S1—C21 105.75 (7) H11A—C11—H11B 108.0
C1—S1—C21 96.99 (7) C13—C12—C11 111.81 (16)
C7—O1—C8 106.42 (11) C13—C12—H12A 109.3
C8—C1—C2 107.47 (13) C11—C12—H12A 109.3
C8—C1—S1 126.07 (11) C13—C12—H12B 109.3
C2—C1—S1 126.16 (11) C11—C12—H12B 109.3
C7—C2—C3 119.28 (13) H12A—C12—H12B 107.9
C7—C2—C1 104.54 (13) C12—C13—C14 111.50 (14)
C3—C2—C1 136.10 (14) C12—C13—H13A 109.3
C4—C3—C2 118.83 (14) C14—C13—H13A 109.3
C4—C3—H3 120.6 C12—C13—H13B 109.3
C2—C3—H3 120.6 C14—C13—H13B 109.3
C3—C4—C5 119.56 (14) H13A—C13—H13B 108.0
C3—C4—C9 121.33 (14) C13—C14—C9 111.27 (15)
C5—C4—C9 119.07 (13) C13—C14—H14A 109.4
C6—C5—C4 122.52 (14) C9—C14—H14A 109.4
C6—C5—H5 118.7 C13—C14—H14B 109.4
C4—C5—H5 118.7 C9—C14—H14B 109.4
C5—C6—C7 116.25 (14) H14A—C14—H14B 108.0
C5—C6—H6 121.9 C20—C15—C16 119.02 (14)
C7—C6—H6 121.9 C20—C15—C8 121.61 (13)
O1—C7—C6 125.48 (13) C16—C15—C8 119.36 (13)
O1—C7—C2 110.99 (12) C17—C16—C15 120.58 (15)
C6—C7—C2 123.51 (14) C17—C16—H16 119.7
C1—C8—O1 110.56 (12) C15—C16—H16 119.7
C1—C8—C15 134.42 (14) C16—C17—C18 120.02 (15)
O1—C8—C15 114.91 (12) C16—C17—H17 120.0
C4—C9—C14 113.06 (13) C18—C17—H17 120.0
C4—C9—C10 113.30 (13) C19—C18—C17 119.86 (15)
C14—C9—C10 108.72 (14) C19—C18—H18 120.1
C4—C9—H9 107.1 C17—C18—H18 120.1
C14—C9—H9 107.1 C18—C19—C20 120.60 (15)
C10—C9—H9 107.1 C18—C19—H19 119.7
C11—C10—C9 111.05 (16) C20—C19—H19 119.7
C11—C10—H10A 109.4 C19—C20—C15 119.90 (14)
C9—C10—H10A 109.4 C19—C20—H20 120.1
C11—C10—H10B 109.4 C15—C20—H20 120.1
C9—C10—H10B 109.4 S1—C21—H21A 109.5
H10A—C10—H10B 108.0 S1—C21—H21B 109.5
C12—C11—C10 111.51 (16) H21A—C21—H21B 109.5
C12—C11—H11A 109.3 S1—C21—H21C 109.5
C10—C11—H11A 109.3 H21A—C21—H21C 109.5
C12—C11—H11B 109.3 H21B—C21—H21C 109.5
O2—S1—C1—C8 138.30 (13) C7—O1—C8—C1 1.09 (15)
C21—S1—C1—C8 −112.85 (14) C7—O1—C8—C15 −175.64 (12)
O2—S1—C1—C2 −34.61 (14) C3—C4—C9—C14 55.4 (2)
C21—S1—C1—C2 74.24 (14) C5—C4—C9—C14 −122.56 (16)
C8—C1—C2—C7 1.53 (16) C3—C4—C9—C10 −68.92 (19)
S1—C1—C2—C7 175.53 (11) C5—C4—C9—C10 113.16 (17)
C8—C1—C2—C3 −175.00 (16) C4—C9—C10—C11 −175.16 (15)
S1—C1—C2—C3 −1.0 (3) C14—C9—C10—C11 58.2 (2)
C7—C2—C3—C4 0.5 (2) C9—C10—C11—C12 −56.0 (2)
C1—C2—C3—C4 176.69 (15) C10—C11—C12—C13 52.9 (2)
C2—C3—C4—C5 1.4 (2) C11—C12—C13—C14 −53.3 (2)
C2—C3—C4—C9 −176.53 (14) C12—C13—C14—C9 56.9 (2)
C3—C4—C5—C6 −1.8 (2) C4—C9—C14—C13 174.51 (14)
C9—C4—C5—C6 176.11 (14) C10—C9—C14—C13 −58.75 (18)
C4—C5—C6—C7 0.3 (2) C1—C8—C15—C20 34.6 (3)
C8—O1—C7—C6 178.45 (14) O1—C8—C15—C20 −149.65 (14)
C8—O1—C7—C2 −0.06 (15) C1—C8—C15—C16 −144.36 (17)
C5—C6—C7—O1 −176.58 (13) O1—C8—C15—C16 31.35 (19)
C5—C6—C7—C2 1.7 (2) C20—C15—C16—C17 −0.9 (2)
C3—C2—C7—O1 176.35 (12) C8—C15—C16—C17 178.11 (15)
C1—C2—C7—O1 −0.90 (15) C15—C16—C17—C18 −0.4 (3)
C3—C2—C7—C6 −2.2 (2) C16—C17—C18—C19 0.8 (3)
C1—C2—C7—C6 −179.44 (13) C17—C18—C19—C20 0.1 (3)
C2—C1—C8—O1 −1.65 (16) C18—C19—C20—C15 −1.4 (3)
S1—C1—C8—O1 −175.65 (10) C16—C15—C20—C19 1.8 (2)
C2—C1—C8—C15 174.19 (15) C8—C15—C20—C19 −177.17 (15)
S1—C1—C8—C15 0.2 (2)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 benzene ring.
D—H···A D—H H···A D···A D—H···A
C5—H5···O2i 0.95 2.50 3.429 (2) 167
C21—H21B···O2ii 0.98 2.33 3.290 (2) 165
C19—H19···Cgii 0.95 2.59 3.392 (2) 142

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5130).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o2922.
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1687. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [DOI] [PubMed]
  9. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810054358/xu5130sup1.cif

e-67-0o281-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054358/xu5130Isup2.hkl

e-67-0o281-Isup2.hkl (196.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES