Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 29;67(Pt 2):o539. doi: 10.1107/S160053681100345X

2,4,6-Trifluoro­benzoic acid

Richard Betz a,*, Thomas Gerber a
PMCID: PMC3051684  PMID: 21523186

Abstract

In the title compound, C7H3F3O2, the C—C—C angles in the ring are greater than 120° for F-bonded C atoms [123.69 (13), 123.88 (12) and 123.66 (12)°]. In the crystal, inter­molecular O—H⋯O hydrogen bonds between carboxyl groups give rise to the formation of a centrosymmetric dimer, while dispersive F⋯O contacts [2.8849 (16) Å] connect the dimers into infinite strands along the a axis.

Related literature

For the crystal structure of benzoic acid (applying neutron diffraction), see: Wilson et al. (1996) and of ortho-fluoro­benzoic acid, see: Krausse & Dunken (1966). For the graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-67-0o539-scheme1.jpg

Experimental

Crystal data

  • C7H3F3O2

  • M r = 176.09

  • Monoclinic, Inline graphic

  • a = 7.2769 (3) Å

  • b = 13.7998 (6) Å

  • c = 7.3097 (3) Å

  • β = 115.041 (2)°

  • V = 665.04 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 200 K

  • 0.59 × 0.29 × 0.18 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 6435 measured reflections

  • 1643 independent reflections

  • 1394 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.106

  • S = 1.05

  • 1643 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100345X/kp2305sup1.cif

e-67-0o539-sup1.cif (13KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100345X/kp2305Isup2.hkl

e-67-0o539-Isup2.hkl (81KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.83 2.6560 (14) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Mr John Robbins for helpful discussions.

supplementary crystallographic information

Comment

Benzoic acid has found widespread use as a ligand in coordination chemistry for a variety of transition metals and elements from the s- and p-block of the periodic system of the elements. It can act as a neutral or – upon deprotonation – an anionic ligand and serve as mono- or bidentate ligand. By varying the substituents on the phenyl moiety, the acidity of the carboxyl group can be fine-tuned. At the beginning of a comprehensive study aimed at rationalizing the coordination behaviour of various benzoic acid derivatives towards a number of transition metals in dependence of the pH value of the reaction batches it seemed interesting to determine the crystal structure of the title compound to enable comparative studies.

The C–C–C angles in the phenyl ring are found to be invariably larger than 120° for C-atoms bonded to F-atoms while the remaining C–C–C angles are measured at values smaller than 120°. The biggest deviation is found for the C-atom bearing the carboxyl group where a value of only about 115° is detected. The least-squares plane defined by the atoms of the carboxyl group encloses an angle of 38.17 (7)° with the plane of the aromatic system (Fig. 1).

In the crystal structure, intermolecular hydrogen bonds connect two molecules to centrosymmtric dimeric units. These dimers are joined by dispersive F···O contacts to infinite strands along the crystallographic a axis. In terms of graph-set analysis, the unitary descriptor for the hydrogen bonds is R22(8) while the F···O contacts are described by a R22(10) descriptor on the unitary level (Fig. 2).

The aromatic rings of the title compound show π-stacking with the COOH group rotated by about 90° with respect to the carboxyl groups of two neighbouring molecules (Fig. 3). The distance between two centers of gravity was determined to be 3.7501 (8) Å, the distance between the perpendicularily- projected centers of gravity of two neighbouring aromatic moieties with respect to the carbocycles was found to be 3.5507 (5) Å and 3.4651 (5) Å, respectively. The molecular packing of the compound is shown in Figure 4.

Experimental

The compound was obtained commercially from Fluorochem. Crystals suitable for X-ray diffraction were obtained upon slow evaporation of an aqueous solution of the compound at room temperature.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the carboxylic acid group was allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level).

Fig. 2.

Fig. 2.

Hydrogen bonds (blue) and intermolecular F···O contacts (yellow), viewed along [0 0 1]. Symmetry operators: i 1 - x, -y, 1 - z; ii 2 - x, -y, 1 - z.

Fig. 3.

Fig. 3.

Cg···Cg distance (blue), viewed approximately along [0 1 0]. Symmetry operators: ix, 1/2 - y, -1/2 + z; iix, 1/2 - y, 1/2 + z.

Fig. 4.

Fig. 4.

Molecular packing of the title compound, viewed approximately along [-1 0 0] (anisotropic displacement ellipsoids drawn at the 50% probability level).

Crystal data

C7H3F3O2 F(000) = 352
Mr = 176.09 Dx = 1.759 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4021 reflections
a = 7.2769 (3) Å θ = 3.0–28.3°
b = 13.7998 (6) Å µ = 0.18 mm1
c = 7.3097 (3) Å T = 200 K
β = 115.041 (2)° Platelet, colourless
V = 665.04 (5) Å3 0.59 × 0.29 × 0.18 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 1394 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.034
graphite θmax = 28.4°, θmin = 3.0°
φ and ω scans h = −9→9
6435 measured reflections k = −18→18
1643 independent reflections l = −5→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.2027P] where P = (Fo2 + 2Fc2)/3
1643 reflections (Δ/σ)max < 0.001
111 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.24 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 1.07313 (14) 0.09987 (7) 0.62543 (18) 0.0511 (3)
F2 1.17560 (15) 0.43353 (7) 0.66407 (16) 0.0529 (3)
F3 0.53852 (12) 0.31106 (6) 0.54957 (15) 0.0430 (3)
O1 0.52914 (16) 0.11612 (8) 0.61602 (17) 0.0400 (3)
H1 0.4596 0.0652 0.5829 0.060*
O2 0.67873 (17) 0.04775 (7) 0.43736 (17) 0.0409 (3)
C1 0.65846 (19) 0.11507 (9) 0.5422 (2) 0.0286 (3)
C2 0.79605 (19) 0.20020 (9) 0.58194 (19) 0.0278 (3)
C3 0.9984 (2) 0.18927 (10) 0.6151 (2) 0.0322 (3)
C4 1.1295 (2) 0.26580 (11) 0.6441 (2) 0.0364 (3)
H4 1.2666 0.2560 0.6663 0.044*
C5 1.0518 (2) 0.35709 (10) 0.6392 (2) 0.0353 (3)
C6 0.8555 (2) 0.37499 (10) 0.6104 (2) 0.0347 (3)
H6 0.8072 0.4390 0.6095 0.043 (5)*
C7 0.7322 (2) 0.29517 (9) 0.5829 (2) 0.0296 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0372 (5) 0.0359 (5) 0.0811 (7) 0.0074 (4) 0.0260 (5) 0.0007 (5)
F2 0.0478 (5) 0.0459 (6) 0.0644 (7) −0.0255 (4) 0.0233 (5) −0.0047 (4)
F3 0.0322 (4) 0.0340 (4) 0.0686 (6) 0.0011 (3) 0.0270 (4) −0.0033 (4)
O1 0.0402 (6) 0.0350 (5) 0.0549 (7) −0.0126 (4) 0.0300 (5) −0.0086 (5)
O2 0.0483 (6) 0.0286 (5) 0.0548 (7) −0.0083 (4) 0.0306 (5) −0.0094 (4)
C1 0.0281 (6) 0.0249 (6) 0.0337 (7) −0.0024 (5) 0.0140 (5) 0.0006 (5)
C2 0.0276 (6) 0.0268 (6) 0.0309 (6) −0.0043 (4) 0.0144 (5) −0.0015 (5)
C3 0.0296 (6) 0.0312 (6) 0.0374 (7) −0.0004 (5) 0.0157 (5) −0.0006 (5)
C4 0.0263 (6) 0.0457 (8) 0.0377 (7) −0.0069 (5) 0.0142 (5) −0.0010 (6)
C5 0.0364 (7) 0.0368 (7) 0.0333 (7) −0.0157 (5) 0.0154 (6) −0.0035 (5)
C6 0.0404 (7) 0.0266 (6) 0.0395 (7) −0.0061 (5) 0.0193 (6) −0.0032 (5)
C7 0.0279 (6) 0.0296 (6) 0.0347 (7) −0.0024 (5) 0.0167 (5) −0.0021 (5)

Geometric parameters (Å, °)

F1—C3 1.3374 (16) C2—C3 1.3953 (17)
F2—C5 1.3486 (15) C3—C4 1.3782 (19)
F3—C7 1.3428 (15) C4—C5 1.375 (2)
O1—C1 1.2674 (16) C4—H4 0.9500
O1—H1 0.8400 C5—C6 1.375 (2)
O2—C1 1.2523 (16) C6—C7 1.3806 (18)
C1—C2 1.4903 (17) C6—H6 0.9500
C2—C7 1.3915 (18)
?···? ?
C1—O1—H1 109.5 C5—C4—H4 121.7
O2—C1—O1 124.75 (12) C3—C4—H4 121.7
O2—C1—C2 117.42 (11) F2—C5—C4 117.98 (13)
O1—C1—C2 117.82 (11) F2—C5—C6 118.13 (13)
C7—C2—C3 115.53 (11) C4—C5—C6 123.88 (12)
C7—C2—C1 123.04 (11) C5—C6—C7 116.61 (13)
C3—C2—C1 121.40 (12) C5—C6—H6 121.7
F1—C3—C4 117.35 (12) C7—C6—H6 121.7
F1—C3—C2 118.93 (12) F3—C7—C6 117.62 (12)
C4—C3—C2 123.69 (13) F3—C7—C2 118.69 (11)
C5—C4—C3 116.60 (13) C6—C7—C2 123.66 (12)
O2—C1—C2—C7 140.81 (14) C3—C4—C5—F2 −179.03 (12)
O1—C1—C2—C7 −38.89 (19) C3—C4—C5—C6 1.0 (2)
O2—C1—C2—C3 −37.27 (19) F2—C5—C6—C7 179.21 (13)
O1—C1—C2—C3 143.02 (14) C4—C5—C6—C7 −0.8 (2)
C7—C2—C3—F1 177.00 (12) C5—C6—C7—F3 −178.40 (12)
C1—C2—C3—F1 −4.8 (2) C5—C6—C7—C2 −0.4 (2)
C7—C2—C3—C4 −1.0 (2) C3—C2—C7—F3 179.23 (12)
C1—C2—C3—C4 177.20 (13) C1—C2—C7—F3 1.0 (2)
F1—C3—C4—C5 −178.06 (13) C3—C2—C7—C6 1.2 (2)
C2—C3—C4—C5 0.0 (2) C1—C2—C7—C6 −176.97 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.84 1.83 2.6560 (14) 169

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2305).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Krausse, J. & Dunken, H. (1966). Acta Cryst. 20, 67–73.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Wilson, C. C., Shankland, N. & Florence, A. J. (1996). J. Chem. Soc. Faraday Trans. 92, 5051–5057.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100345X/kp2305sup1.cif

e-67-0o539-sup1.cif (13KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100345X/kp2305Isup2.hkl

e-67-0o539-Isup2.hkl (81KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES