Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 12;67(Pt 2):o343–o344. doi: 10.1107/S1600536811000596

3-Meth­oxy-2-[(E)-(4-meth­oxy­phen­yl)imino­meth­yl]phenol

Gonca Özdemir Tari a, Şamil Işık a, Ramazan Özkan b, Ayşen Alaman Ağar b,*
PMCID: PMC3051687  PMID: 21523025

Abstract

The title compound, C15H15NO3, adopts the enol–imine tautomeric form. The two rings are twisted with respect to each other, making a dihedral angle of 44.08 (5)°. The 3-methoxy-2-[(E)-(4-methoxyphenyl)-iminomethyl]phenol unit is almost planar, the largest deviation from the mean plane being 0.047 (2) Å. Such a planar conformation might be related to the occurrence of an intra­molecular O—H⋯N hydrogen bond. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into sheets parallel to (010). These sheets are inter­connected by weak C—H⋯π inter­actions.

Related literature

For background to the properties and uses of Schiff bases, see: Barton & Ollis (1979); Layer (1963); Ingold (1969); Cohen et al. (1964); Taggi et al. (2002). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995). For related structures, see: Özdemir Tarı et al. (2010); Şahin et al. (2005).graphic file with name e-67-0o343-scheme1.jpg

Experimental

Crystal data

  • C15H15NO3

  • M r = 257.28

  • Monoclinic, Inline graphic

  • a = 14.2658 (8) Å

  • b = 14.1553 (11) Å

  • c = 6.5893 (17) Å

  • β = 96.398 (9)°

  • V = 1322.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.65 × 0.32 × 0.14 mm

Data collection

  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe, 2002) T min = 0.991, T max = 0.997

  • 7244 measured reflections

  • 2585 independent reflections

  • 1622 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.122

  • S = 1.04

  • 2585 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: X-AREA (Stoe, 2002); cell refinement: X-AREA ; data reduction: X-RED32 (Stoe, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811000596/dn2646sup1.cif

e-67-0o343-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000596/dn2646Isup2.hkl

e-67-0o343-Isup2.hkl (124.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1—C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.93 2.60 3.428 (3) 149
C14—H14A⋯O1ii 0.96 2.49 3.412 (3) 162
O2—H2A⋯N1 0.82 1.87 2.590 (2) 146
C5—H5⋯Cg1iii 0.93 2.80 3.486 (2) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F279 of the University Research Fund).

supplementary crystallographic information

Comment

Schiff bases are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Barton et al., 1979; Layer, 1963; Ingold 1969). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et al., 2002). There are two characteristic properties of Schiff bases, viz. Photochromism and thermochromism (Cohen et al., 1964). In general, Schiff bases display two possible tautomeric forms, the phenol-imine (OH) and the keto-amine (NH) forms. Depending on the tautomers, two types of intramolecular hydrogen bonds are observed in Schiff bases: O—H···N in phenol-imine (Özdemir Tarı et al., 2010) and N—H···O in keto-amine tautomers (Şahin et al., 2005). Another form of the Schiff base compounds is also known as zwitterion having an ionic intramolecular hydrogen bond (N+—H···O-) and this form is rarely seen in the solid state (Özdemir Tarı et al., 2010).

The title compound, C15H15O3N1, adopts the enol-imine tautomeric form. The C7=N1 [1.278 (3) Å] and C8=N1 [1.419 (2) Å] bond distances are of double-bond character, whereas, C6—O2 [1.356 (2) Å] distance is single bond. These distances are similar to that reported in the literature [1.269 (8) Å] and [1.397 (7) Å] for C=N and [1.332 (8) Å] for C—O respectively (Özdemir Tarı et al., 2010).

The two phenyl rings are twisted with respect to each other making dihedral angle of 44.08 (5)° (Fig. 1). The 4-methoxyphenylimino)phenol moiety is planar with the largest deviation from the mean plane being 0.047 (2)Å at C7. Such planar conformation might be related to the occurrence of the O—H···N intramolecular hydrogen bond (Fig. 1, Table 1). This intramolecular N—H···O hydrogen bond results in the formation of an S(6) ring (Etter et al., 1990; Bernstein et al., 1995).

Intermolecular C—H···O hydrogen bonds link the molecules forming sheets parallel to the (0 1 0) plane (Fig. 2, Table 1). These sheets are interconnected by weak C—H···π interactions (Table 1, Cg1 is the centroid of the C1—C6 phenyl ring).

Experimental

(E)-3-methoxy-2-((4-methoxyphenylimino)methyl)phenol was prepared by refluxing a mixture of a solution containing 2-hydroxy-6- methoxybenzaldehyde (15.2 mg, o.1 mmol) in ethanol (30 ml) and a solution containing 4-methoxyaniline (12.3 mg, 0.1 mmol) in ethanol (20 ml). The reaction mixture was stirred for 2 h under reflux. Single crystals of the title compound for x-ray analysis were obtained by slow evaporation of an ethanol solution (yield 72%; m.p 346–348 K).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. Intramolecular H bond is shown as dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound showing the formation of sheets parallel to the (0 1 0) plane. H bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C15H15NO3 F(000) = 544
Mr = 257.28 Dx = 1.292 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 12079 reflections
a = 14.2658 (8) Å θ = 1.4–27.2°
b = 14.1553 (11) Å µ = 0.09 mm1
c = 6.5893 (17) Å T = 293 K
β = 96.398 (9)° Prism, brown
V = 1322.3 (4) Å3 0.65 × 0.32 × 0.14 mm
Z = 4

Data collection

Stoe IPDS 2 diffractometer 2585 independent reflections
Radiation source: fine-focus sealed tube 1622 reflections with I > 2σ(I)
graphite Rint = 0.032
Detector resolution: 6.67 pixels mm-1 θmax = 26.0°, θmin = 1.4°
φ scan rotation method h = −16→17
Absorption correction: integration (X-RED32; Stoe, 2002) k = −17→17
Tmin = 0.991, Tmax = 0.997 l = −8→6
7244 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.1038P] where P = (Fo2 + 2Fc2)/3
2585 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 0.11 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.20529 (13) 0.11619 (13) 0.4013 (3) 0.0443 (5)
C2 0.29338 (14) 0.10131 (14) 0.3295 (3) 0.0483 (5)
H2 0.2959 0.0793 0.1972 0.058*
C3 0.37566 (14) 0.11898 (15) 0.4526 (3) 0.0516 (5)
C4 0.37125 (16) 0.15062 (15) 0.6515 (3) 0.0548 (6)
H4 0.4268 0.1626 0.7353 0.066*
C5 0.28635 (16) 0.16440 (15) 0.7254 (3) 0.0542 (6)
H5 0.2848 0.1854 0.8588 0.065*
C6 0.20294 (15) 0.14735 (14) 0.6034 (3) 0.0479 (5)
C7 0.11923 (14) 0.10451 (13) 0.2639 (3) 0.0481 (5)
H7 0.1229 0.0900 0.1274 0.058*
C8 −0.04619 (13) 0.11307 (14) 0.1930 (3) 0.0459 (5)
C9 −0.12676 (15) 0.07751 (15) 0.2668 (4) 0.0544 (6)
H9 −0.1226 0.0522 0.3977 0.065*
C10 −0.21198 (15) 0.07926 (15) 0.1495 (4) 0.0553 (6)
H10 −0.2648 0.0535 0.1995 0.066*
C11 −0.22005 (14) 0.11941 (14) −0.0446 (4) 0.0512 (5)
C12 −0.14058 (15) 0.15559 (16) −0.1200 (4) 0.0561 (6)
H12 −0.1452 0.1823 −0.2497 0.067*
C13 −0.05435 (15) 0.15172 (15) −0.0012 (3) 0.0537 (6)
H13 −0.0010 0.1755 −0.0526 0.064*
C14 −0.3216 (2) 0.1629 (2) −0.3428 (5) 0.0908 (9)
H14A −0.3868 0.1590 −0.3970 0.136*
H14B −0.2837 0.1297 −0.4310 0.136*
H14C −0.3026 0.2280 −0.3338 0.136*
C15 0.47450 (18) 0.0772 (2) 0.1985 (4) 0.0881 (9)
H15A 0.5402 0.0742 0.1795 0.132*
H15B 0.4427 0.1196 0.1000 0.132*
H15C 0.4472 0.0153 0.1810 0.132*
N1 0.03849 (12) 0.11390 (12) 0.3283 (3) 0.0496 (4)
O1 0.46496 (10) 0.10987 (13) 0.3953 (3) 0.0752 (5)
O2 0.12069 (11) 0.16290 (11) 0.6830 (2) 0.0636 (5)
H2A 0.0763 0.1500 0.5975 0.095*
O3 −0.30930 (10) 0.12168 (12) −0.1453 (3) 0.0662 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0417 (11) 0.0426 (10) 0.0480 (12) −0.0004 (9) 0.0020 (9) −0.0004 (9)
C2 0.0481 (12) 0.0525 (12) 0.0439 (12) 0.0043 (9) 0.0032 (10) −0.0031 (9)
C3 0.0418 (11) 0.0593 (12) 0.0524 (13) 0.0040 (10) 0.0000 (10) 0.0011 (10)
C4 0.0537 (14) 0.0603 (13) 0.0475 (13) −0.0011 (10) −0.0073 (11) −0.0002 (10)
C5 0.0630 (15) 0.0575 (13) 0.0412 (12) 0.0010 (10) 0.0017 (11) −0.0042 (10)
C6 0.0494 (13) 0.0472 (11) 0.0487 (13) 0.0010 (9) 0.0117 (10) 0.0013 (9)
C7 0.0468 (12) 0.0484 (11) 0.0494 (12) 0.0000 (9) 0.0059 (10) −0.0025 (9)
C8 0.0401 (11) 0.0430 (11) 0.0551 (13) −0.0016 (9) 0.0075 (10) −0.0027 (9)
C9 0.0480 (13) 0.0570 (13) 0.0586 (14) −0.0036 (10) 0.0080 (11) 0.0085 (11)
C10 0.0406 (12) 0.0562 (13) 0.0706 (15) −0.0078 (10) 0.0127 (11) 0.0063 (11)
C11 0.0404 (11) 0.0493 (11) 0.0632 (14) −0.0021 (9) 0.0025 (10) −0.0071 (11)
C12 0.0519 (13) 0.0645 (14) 0.0516 (13) −0.0045 (10) 0.0046 (11) 0.0036 (10)
C13 0.0402 (12) 0.0667 (13) 0.0548 (14) −0.0061 (10) 0.0086 (10) 0.0042 (11)
C14 0.0623 (17) 0.125 (3) 0.079 (2) −0.0102 (16) −0.0186 (15) 0.0173 (18)
C15 0.0519 (15) 0.142 (3) 0.0722 (18) 0.0053 (15) 0.0146 (14) −0.0252 (18)
N1 0.0409 (10) 0.0518 (10) 0.0561 (11) −0.0028 (8) 0.0057 (8) 0.0023 (8)
O1 0.0402 (9) 0.1206 (15) 0.0637 (11) 0.0052 (9) 0.0009 (8) −0.0167 (10)
O2 0.0557 (9) 0.0812 (11) 0.0560 (10) 0.0037 (8) 0.0157 (8) −0.0081 (8)
O3 0.0417 (9) 0.0795 (11) 0.0749 (11) −0.0074 (7) −0.0055 (8) 0.0016 (9)

Geometric parameters (Å, °)

C1—C6 1.407 (3) C9—H9 0.9300
C1—C2 1.407 (3) C10—C11 1.393 (3)
C1—C7 1.451 (3) C10—H10 0.9300
C2—C3 1.373 (3) C11—O3 1.369 (2)
C2—H2 0.9300 C11—C12 1.386 (3)
C3—O1 1.375 (3) C12—C13 1.384 (3)
C3—C4 1.393 (3) C12—H12 0.9300
C4—C5 1.369 (3) C13—H13 0.9300
C4—H4 0.9300 C14—O3 1.419 (3)
C5—C6 1.381 (3) C14—H14A 0.9600
C5—H5 0.9300 C14—H14B 0.9600
C6—O2 1.356 (2) C14—H14C 0.9600
C7—N1 1.278 (3) C15—O1 1.397 (3)
C7—H7 0.9300 C15—H15A 0.9600
C8—C13 1.385 (3) C15—H15B 0.9600
C8—C9 1.391 (3) C15—H15C 0.9600
C8—N1 1.419 (2) O2—H2A 0.8200
C9—C10 1.366 (3)
C6—C1—C2 118.79 (19) C9—C10—H10 119.9
C6—C1—C7 121.21 (19) C11—C10—H10 119.9
C2—C1—C7 119.91 (19) O3—C11—C12 124.9 (2)
C3—C2—C1 120.7 (2) O3—C11—C10 115.58 (18)
C3—C2—H2 119.6 C12—C11—C10 119.5 (2)
C1—C2—H2 119.6 C13—C12—C11 119.6 (2)
C2—C3—O1 125.3 (2) C13—C12—H12 120.2
C2—C3—C4 119.3 (2) C11—C12—H12 120.2
O1—C3—C4 115.40 (19) C12—C13—C8 121.1 (2)
C5—C4—C3 121.0 (2) C12—C13—H13 119.5
C5—C4—H4 119.5 C8—C13—H13 119.5
C3—C4—H4 119.5 O3—C14—H14A 109.5
C4—C5—C6 120.4 (2) O3—C14—H14B 109.5
C4—C5—H5 119.8 H14A—C14—H14B 109.5
C6—C5—H5 119.8 O3—C14—H14C 109.5
O2—C6—C5 118.21 (18) H14A—C14—H14C 109.5
O2—C6—C1 122.03 (19) H14B—C14—H14C 109.5
C5—C6—C1 119.75 (19) O1—C15—H15A 109.5
N1—C7—C1 120.8 (2) O1—C15—H15B 109.5
N1—C7—H7 119.6 H15A—C15—H15B 109.5
C1—C7—H7 119.6 O1—C15—H15C 109.5
C13—C8—C9 118.6 (2) H15A—C15—H15C 109.5
C13—C8—N1 123.71 (18) H15B—C15—H15C 109.5
C9—C8—N1 117.54 (19) C7—N1—C8 121.78 (19)
C10—C9—C8 120.9 (2) C3—O1—C15 118.36 (18)
C10—C9—H9 119.6 C6—O2—H2A 109.5
C8—C9—H9 119.6 C11—O3—C14 117.85 (19)
C9—C10—C11 120.29 (19)
C6—C1—C2—C3 −1.5 (3) N1—C8—C9—C10 176.32 (19)
C7—C1—C2—C3 175.00 (19) C8—C9—C10—C11 −1.9 (3)
C1—C2—C3—O1 −177.7 (2) C9—C10—C11—O3 −176.91 (19)
C1—C2—C3—C4 1.0 (3) C9—C10—C11—C12 1.5 (3)
C2—C3—C4—C5 −0.1 (3) O3—C11—C12—C13 178.0 (2)
O1—C3—C4—C5 178.7 (2) C10—C11—C12—C13 −0.3 (3)
C3—C4—C5—C6 −0.2 (3) C11—C12—C13—C8 −0.6 (3)
C4—C5—C6—O2 −179.4 (2) C9—C8—C13—C12 0.3 (3)
C4—C5—C6—C1 −0.4 (3) N1—C8—C13—C12 −174.7 (2)
C2—C1—C6—O2 −179.81 (18) C1—C7—N1—C8 172.99 (18)
C7—C1—C6—O2 3.7 (3) C13—C8—N1—C7 −36.1 (3)
C2—C1—C6—C5 1.2 (3) C9—C8—N1—C7 148.9 (2)
C7—C1—C6—C5 −175.24 (19) C2—C3—O1—C15 −2.2 (4)
C6—C1—C7—N1 −6.4 (3) C4—C3—O1—C15 179.1 (2)
C2—C1—C7—N1 177.11 (18) C12—C11—O3—C14 0.9 (3)
C13—C8—C9—C10 1.0 (3) C10—C11—O3—C14 179.2 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1—C6 ring.
D—H···A D—H H···A D···A D—H···A
C13—H13···O2i 0.93 2.60 3.428 (3) 149
C14—H14A···O1ii 0.96 2.49 3.412 (3) 162
O2—H2A···N1 0.82 1.87 2.590 (2) 146
C5—H5···Cg1iii 0.93 2.80 3.486 (2) 132

Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z−1; (iii) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2646).

References

  1. Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.
  2. Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 1041–2051.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Ingold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.
  8. Layer, R. W. (1963). Chem. Rev. 63, 489–510.
  9. Özdemir Tarı, G., Tanak, H., Macit, M., Erşahin, F. & Isık, Ş. (2010). Acta Cryst. E66, o85. [DOI] [PMC free article] [PubMed]
  10. Şahin, O., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2859–o2861. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Stoe (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  14. Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811000596/dn2646sup1.cif

e-67-0o343-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000596/dn2646Isup2.hkl

e-67-0o343-Isup2.hkl (124.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES