Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):m199–m200. doi: 10.1107/S1600536811000468

catena-Poly[[(2,2′-bipyridine-κ2 N,N′)cadmium]-μ3-4-nitro­phthalato-κ4 O:O′,O′′:O′′′]

Yang Fan a, Guo-Min Xu b, Hai-Ting Lu a, Wei Li b,*
PMCID: PMC3051688  PMID: 21522865

Abstract

In the title polymeric compound, [Cd(C8H3NO6)(C10H8N2)]n, two O atoms from both carboxyl­ate groups of a nitro­phthalate anion coordinate to the CdII cation, forming a seven-membered chelate ring and two carboxyl­ate O atoms from another two nitro­phthalate anions and a 2,2′-bipyridine ligand coordinate to the Cd cation to complete the distorted octa­hedral coordination geometry. The carboxyl­ate groups of the nitro­phthalate anion adopt a syn–anti bridging mode, linking adjacent CdII cations and forming a polymeric chain running along the a axis. Weak intra- and inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For applications of coordination polymers, see: Long & Yaghi (2009); Kurmoo et al. (2009); Cheetham et al. (2006). For related complexes with 4-nitro­phthalate ligands, see: Guo & Guo (2007); Xu et al. (2009); He et al. (2010).graphic file with name e-67-0m199-scheme1.jpg

Experimental

Crystal data

  • [Cd(C8H3NO6)(C10H8N2)]

  • M r = 477.70

  • Monoclinic, Inline graphic

  • a = 7.3327 (4) Å

  • b = 17.3786 (9) Å

  • c = 13.3859 (7) Å

  • β = 98.149 (2)°

  • V = 1688.57 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 293 K

  • 0.50 × 0.30 × 0.07 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.624, T max = 0.911

  • 19676 measured reflections

  • 3825 independent reflections

  • 3452 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.053

  • S = 1.03

  • 3825 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811000468/xu5128sup1.cif

e-67-0m199-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000468/xu5128Isup2.hkl

e-67-0m199-Isup2.hkl (187.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—O1i 2.2820 (15)
Cd1—O2 2.3165 (14)
Cd1—O3ii 2.3570 (15)
Cd1—O4 2.4753 (16)
Cd1—N2 2.3659 (18)
Cd1—N3 2.3979 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O5iii 0.93 2.49 3.349 (3) 154
C9—H9⋯O3ii 0.93 2.39 3.037 (3) 126
C12—H12⋯O3iv 0.93 2.56 3.490 (3) 177
C15—H15⋯O3iv 0.93 2.56 3.493 (3) 176
C18—H18⋯O2i 0.93 2.43 3.235 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Science and Technology Foundation of Guizhou Province, China (No. [2008]2216).

supplementary crystallographic information

Comment

The rational design and synthesis of coordination complexes and polymers have attracted considerable attention since they can exhibit various fascinating structure topologies and have potential applications in gas adsorption and magnetism (Long & Yaghi, 2009; Kurmoo et al., 2009). During the past decades, large amount of coordination complexes and polymers have been successfully prepared and reported, in which polycarboxylates have been widely used as bridging ligands to construct coordination complexes and polymers (Cheetham et al., 2006). 4-Nitrophthalic acid is a good candidate in the polycarboxylate family because it has two carboxylate groups that can supply four potential O-donor atoms. However, only a few reports exist of coordination complexes and polymers related to 4-nitrophthalic acid have been published to our knowledge (Guo et al., 2007; Xu et al., 2009; He et al., 2010). In order to enrich the metal-4-nitrophthalate coordination complexes and polymers, we employed this ligand to assemble with cadmium ion in the presence of ancillary 2,2'-bipyridine ligand and obtained the title one-dimensional coordination polymer [Cd(4-nitrophthalate)(2,2'-bpy)]n.

As shown from Fig. 1, the asymmetric unit of the title compound (I) has a Cd(II) ion, a 4-nitrophthalate and a 2,2'-bipyridine ligand. Cd1 ion has a distorted octahedral coordination environment comprising of two nitrogen atoms from a chelating 2,2'-bipyridine ligand, two oxygen atoms from both of the syn-anti carboxylates of a chelating 4-nitrophthalate ligand and two oxygen atoms from other two syn-anti carboxylates of two different crystallographic symmetric 4-nitrophthalate ligands. Each Cd(II) ion is linked to adjacent two Cd(II) ions by two syn-anti carboxylates from one 4-nitrophthalate ligand and other two syn–anti carboxylates from two different 4-nitrophthalate ligands to form a chained structure along the a axis with alternating Cd···Cd distances of 4.198 (5) and 5.094 (1)Å (Fig. 2).

Experimental

Cd(NO3)2.4H2O (0.25 mmol, 0.077 g), 4-nitrophthalic acid (0.25 mmol, 0.052 g), 2,2'-bipyridine (0.25 mmol, 0.039 g) and NaOH (0.5 mmol, 0.020 g) were well mixed in 8 ml distilled water, and the solution was stirred for 30 min and then transferred into a 23 ml Teflon-lined bomb at 423 K for 3 d and slowly cooled to room temperature. Colorless crystals suitable for X-ray analysis were obtained.

Refinement

H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode, Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. [Symmetry code: (A) -x, 1 - y, 1 - z; (B) 1 - x, 1 - y, 1 - z.]

Fig. 2.

Fig. 2.

The one-dimensional structure of the title compound. Hydrogen atoms are omitted for clarity.

Crystal data

[Cd(C8H3NO6)(C10H8N2)] F(000) = 944
Mr = 477.70 Dx = 1.879 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5075 reflections
a = 7.3327 (4) Å θ = 2.8–27.6°
b = 17.3786 (9) Å µ = 1.34 mm1
c = 13.3859 (7) Å T = 293 K
β = 98.149 (2)° Sheet, colorless
V = 1688.57 (15) Å3 0.50 × 0.30 × 0.07 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3825 independent reflections
Radiation source: fine-focus sealed tube 3452 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.624, Tmax = 0.911 k = −21→22
19676 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0234P)2 + 1.1148P] where P = (Fo2 + 2Fc2)/3
3825 reflections (Δ/σ)max = 0.003
253 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Experimental. Calcd for C18H11N3O6Cd (Mr = 477.71): C, 45.26; H, 2.32; N, 8.80%. Found: C, 45.34; H, 2.27; N, 8.85%. FT—IR (KBr) 3450 b, 3099 w, 3068 w, 3037 w, 1590 vs, 1551 m, 1513 s, 1495 s, 1439 s, 1422 s,1392 s, 1360 s, 1316 w, 1245 m, 1170 m, 1161 m, 1066 w, 1016 s, 905 m, 830 s,771 s, 740 s, 725 w. Thermogravimetric analysis (TGA) shows that compound (I) has a good thermal stability and exhibits no weight loss untill 200 °C.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.285437 (18) 0.580935 (8) 0.487418 (10) 0.02454 (6)
C10 0.7094 (3) 0.77702 (15) 0.51077 (19) 0.0466 (6)
H10 0.8100 0.7885 0.4782 0.056*
O1 −0.0364 (2) 0.41748 (8) 0.63597 (11) 0.0330 (3)
O3 0.5668 (2) 0.41313 (9) 0.65772 (12) 0.0361 (3)
O2 0.17615 (18) 0.46901 (8) 0.55187 (10) 0.0279 (3)
O4 0.5555 (2) 0.53373 (10) 0.60322 (11) 0.0400 (4)
C6 0.3977 (3) 0.50255 (11) 0.74051 (14) 0.0250 (4)
N3 0.1434 (2) 0.65808 (10) 0.60339 (13) 0.0311 (4)
C7 0.1086 (2) 0.45463 (11) 0.63060 (14) 0.0233 (4)
N1 0.0788 (3) 0.57744 (11) 0.96042 (15) 0.0440 (5)
C1 0.2082 (2) 0.48689 (11) 0.72851 (13) 0.0233 (4)
N2 0.4489 (3) 0.69724 (10) 0.52417 (14) 0.0365 (4)
C2 0.1054 (3) 0.50831 (11) 0.80376 (14) 0.0269 (4)
H2 −0.0194 0.4966 0.7979 0.032*
C3 0.1915 (3) 0.54717 (13) 0.88696 (15) 0.0327 (4)
C14 0.2403 (3) 0.71869 (12) 0.64530 (15) 0.0327 (4)
C4 0.3784 (3) 0.56177 (15) 0.90138 (17) 0.0415 (5)
H4 0.4336 0.5869 0.9593 0.050*
C5 0.4821 (3) 0.53847 (14) 0.82832 (16) 0.0373 (5)
H5 0.6086 0.5468 0.8377 0.045*
C16 0.0198 (4) 0.73882 (15) 0.75846 (19) 0.0498 (6)
H16 −0.0202 0.7655 0.8115 0.060*
C17 −0.0804 (3) 0.67790 (14) 0.71452 (18) 0.0434 (5)
H17 −0.1898 0.6630 0.7365 0.052*
C18 −0.0145 (3) 0.63920 (12) 0.63669 (16) 0.0348 (5)
H18 −0.0828 0.5983 0.6062 0.042*
C15 0.1801 (4) 0.76022 (14) 0.72341 (18) 0.0460 (6)
H15 0.2477 0.8021 0.7517 0.055*
O5 −0.0883 (3) 0.57084 (11) 0.94263 (14) 0.0521 (5)
C8 0.5143 (2) 0.48150 (12) 0.66069 (14) 0.0273 (4)
C13 0.4092 (3) 0.74003 (12) 0.60168 (16) 0.0331 (4)
O6 0.1566 (3) 0.60768 (16) 1.03689 (18) 0.0875 (8)
C12 0.5195 (3) 0.80256 (13) 0.63640 (18) 0.0418 (5)
H12 0.4917 0.8317 0.6905 0.050*
C9 0.5963 (3) 0.71551 (14) 0.48055 (19) 0.0444 (6)
H9 0.6238 0.6853 0.4273 0.053*
C11 0.6697 (3) 0.82089 (14) 0.5902 (2) 0.0462 (6)
H11 0.7437 0.8627 0.6125 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.02554 (9) 0.02418 (9) 0.02423 (8) −0.00343 (5) 0.00470 (6) −0.00128 (5)
C10 0.0415 (14) 0.0370 (13) 0.0619 (16) −0.0108 (10) 0.0092 (12) −0.0012 (11)
O1 0.0276 (7) 0.0398 (9) 0.0307 (7) −0.0110 (6) 0.0014 (6) 0.0029 (6)
O3 0.0315 (8) 0.0406 (9) 0.0370 (8) 0.0067 (6) 0.0079 (6) −0.0058 (6)
O2 0.0283 (7) 0.0326 (8) 0.0230 (7) −0.0045 (6) 0.0045 (5) −0.0015 (5)
O4 0.0322 (8) 0.0532 (10) 0.0360 (8) −0.0075 (7) 0.0097 (6) 0.0086 (7)
C6 0.0229 (9) 0.0276 (10) 0.0245 (9) 0.0005 (7) 0.0035 (7) 0.0007 (7)
N3 0.0359 (10) 0.0253 (9) 0.0314 (9) 0.0009 (7) 0.0026 (7) −0.0025 (7)
C7 0.0216 (9) 0.0226 (9) 0.0253 (9) 0.0017 (7) 0.0015 (7) 0.0004 (7)
N1 0.0506 (13) 0.0439 (12) 0.0410 (11) −0.0024 (9) 0.0183 (10) −0.0138 (9)
C1 0.0239 (9) 0.0229 (9) 0.0232 (9) 0.0011 (7) 0.0033 (7) 0.0014 (7)
N2 0.0397 (10) 0.0297 (9) 0.0403 (10) −0.0058 (8) 0.0065 (8) −0.0051 (8)
C2 0.0232 (9) 0.0292 (10) 0.0290 (10) 0.0019 (8) 0.0065 (8) 0.0019 (8)
C3 0.0374 (11) 0.0334 (11) 0.0292 (10) 0.0018 (9) 0.0112 (9) −0.0046 (8)
C14 0.0424 (12) 0.0250 (10) 0.0298 (10) 0.0021 (9) 0.0016 (9) −0.0016 (8)
C4 0.0394 (13) 0.0540 (14) 0.0305 (11) −0.0083 (11) 0.0029 (9) −0.0149 (10)
C5 0.0257 (10) 0.0533 (14) 0.0325 (11) −0.0066 (9) 0.0022 (9) −0.0087 (10)
C16 0.0688 (17) 0.0414 (14) 0.0428 (13) 0.0051 (12) 0.0198 (12) −0.0086 (11)
C17 0.0475 (14) 0.0390 (13) 0.0461 (13) 0.0065 (10) 0.0157 (11) 0.0033 (10)
C18 0.0379 (12) 0.0280 (11) 0.0385 (11) 0.0023 (9) 0.0051 (9) 0.0007 (9)
C15 0.0609 (16) 0.0359 (13) 0.0414 (13) −0.0025 (11) 0.0075 (11) −0.0114 (10)
O5 0.0425 (10) 0.0660 (12) 0.0510 (10) 0.0134 (8) 0.0179 (8) −0.0088 (9)
C8 0.0174 (9) 0.0397 (12) 0.0243 (9) −0.0034 (8) 0.0013 (7) −0.0032 (8)
C13 0.0388 (12) 0.0249 (10) 0.0337 (10) 0.0007 (9) −0.0011 (9) 0.0001 (8)
O6 0.0757 (15) 0.121 (2) 0.0728 (15) −0.0328 (15) 0.0343 (12) −0.0668 (15)
C12 0.0493 (14) 0.0288 (12) 0.0448 (13) −0.0029 (10) −0.0016 (11) −0.0065 (9)
C9 0.0452 (14) 0.0385 (13) 0.0514 (14) −0.0088 (10) 0.0130 (11) −0.0079 (11)
C11 0.0466 (14) 0.0287 (12) 0.0603 (15) −0.0109 (10) −0.0030 (12) −0.0031 (11)

Geometric parameters (Å, °)

Cd1—O1i 2.2820 (15) N2—C9 1.337 (3)
Cd1—O2 2.3165 (14) N2—C13 1.342 (3)
Cd1—O3ii 2.3570 (15) C2—C3 1.377 (3)
Cd1—O4 2.4753 (16) C2—H2 0.9300
Cd1—N2 2.3659 (18) C3—C4 1.380 (3)
Cd1—N3 2.3979 (17) C14—C15 1.393 (3)
C10—C11 1.372 (4) C14—C13 1.489 (3)
C10—C9 1.378 (3) C4—C5 1.382 (3)
C10—H10 0.9300 C4—H4 0.9300
O1—C7 1.255 (2) C5—H5 0.9300
O3—C8 1.251 (2) C16—C17 1.373 (4)
O2—C7 1.252 (2) C16—C15 1.377 (4)
O4—C8 1.254 (2) C16—H16 0.9300
C6—C5 1.396 (3) C17—C18 1.384 (3)
C6—C1 1.403 (3) C17—H17 0.9300
C6—C8 1.505 (3) C18—H18 0.9300
N3—C18 1.339 (3) C15—H15 0.9300
N3—C14 1.347 (3) C13—C12 1.395 (3)
C7—C1 1.515 (3) C12—C11 1.375 (4)
N1—O6 1.218 (3) C12—H12 0.9300
N1—O5 1.220 (3) C9—H9 0.9300
N1—C3 1.469 (3) C11—H11 0.9300
C1—C2 1.392 (3)
O1i—Cd1—O2 89.78 (5) C3—C2—H2 120.6
O1i—Cd1—O3ii 79.46 (5) C1—C2—H2 120.6
O2—Cd1—O3ii 124.57 (5) C2—C3—C4 122.41 (18)
O1i—Cd1—N2 118.03 (6) C2—C3—N1 118.68 (19)
O2—Cd1—N2 146.28 (6) C4—C3—N1 118.84 (19)
O3ii—Cd1—N2 81.69 (6) N3—C14—C15 120.9 (2)
O1i—Cd1—N3 94.91 (6) N3—C14—C13 116.74 (18)
O2—Cd1—N3 91.34 (5) C15—C14—C13 122.3 (2)
O3ii—Cd1—N3 143.29 (6) C3—C4—C5 118.8 (2)
N2—Cd1—N3 68.99 (6) C3—C4—H4 120.6
O1i—Cd1—O4 160.78 (5) C5—C4—H4 120.6
O2—Cd1—O4 77.10 (5) C4—C5—C6 120.3 (2)
O3ii—Cd1—O4 96.33 (5) C4—C5—H5 119.8
N2—Cd1—O4 79.41 (6) C6—C5—H5 119.8
N3—Cd1—O4 99.33 (6) C17—C16—C15 119.6 (2)
C11—C10—C9 118.3 (2) C17—C16—H16 120.2
C11—C10—H10 120.9 C15—C16—H16 120.2
C9—C10—H10 120.9 C16—C17—C18 118.3 (2)
C7—O1—Cd1i 123.37 (12) C16—C17—H17 120.8
C8—O3—Cd1ii 99.45 (12) C18—C17—H17 120.8
C7—O2—Cd1 132.87 (12) N3—C18—C17 122.8 (2)
C8—O4—Cd1 112.52 (12) N3—C18—H18 118.6
C5—C6—C1 119.77 (17) C17—C18—H18 118.6
C5—C6—C8 118.59 (17) C16—C15—C14 119.5 (2)
C1—C6—C8 121.64 (17) C16—C15—H15 120.3
C18—N3—C14 118.85 (18) C14—C15—H15 120.3
C18—N3—Cd1 123.62 (14) O3—C8—O4 124.44 (18)
C14—N3—Cd1 117.07 (14) O3—C8—C6 117.51 (17)
O2—C7—O1 126.20 (17) O4—C8—C6 118.04 (18)
O2—C7—C1 117.06 (16) N2—C13—C12 120.7 (2)
O1—C7—C1 116.71 (16) N2—C13—C14 116.68 (19)
O6—N1—O5 122.8 (2) C12—C13—C14 122.6 (2)
O6—N1—C3 118.4 (2) C11—C12—C13 119.6 (2)
O5—N1—C3 118.72 (19) C11—C12—H12 120.2
C2—C1—C6 119.66 (17) C13—C12—H12 120.2
C2—C1—C7 118.75 (16) N2—C9—C10 123.1 (2)
C6—C1—C7 121.28 (16) N2—C9—H9 118.5
C9—N2—C13 118.92 (19) C10—C9—H9 118.5
C9—N2—Cd1 121.94 (15) C10—C11—C12 119.4 (2)
C13—N2—Cd1 118.37 (14) C10—C11—H11 120.3
C3—C2—C1 118.88 (18) C12—C11—H11 120.3

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···O5iii 0.93 2.49 3.349 (3) 154
C9—H9···O3ii 0.93 2.39 3.037 (3) 126
C12—H12···O3iv 0.93 2.56 3.490 (3) 177
C15—H15···O3iv 0.93 2.56 3.493 (3) 176
C18—H18···O2i 0.93 2.43 3.235 (3) 145

Symmetry codes: (iii) x+1, y, z; (ii) −x+1, −y+1, −z+1; (iv) −x+1, y+1/2, −z+3/2; (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5128).

References

  1. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cheetham, A. K., Rao, C. N. R. & Feller, R. K. (2006). Chem. Commun. pp. 4780–4795. [DOI] [PubMed]
  3. Guo, M.-L. & Guo, C.-H. (2007). Acta Cryst. C63, m595–m597. [DOI] [PubMed]
  4. He, M., Li, Q.-F., Xie, T., Xu, G.-M., Yu, J. & Li, W. (2010). Chin. J. Struct. Chem. 29, 582-586.
  5. Kurmoo, M. (2009). Chem. Soc. Rev. 38, 1353–1379. [DOI] [PubMed]
  6. Long, J.-L. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213–1214. [DOI] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Xu, B.-Y., Xie, T., Lu, S.-J., Xue, B. & Li, W. (2009). Acta Cryst. E65, m856–m857. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811000468/xu5128sup1.cif

e-67-0m199-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000468/xu5128Isup2.hkl

e-67-0m199-Isup2.hkl (187.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES