Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 22;67(Pt 2):o475. doi: 10.1107/S1600536811000754

5-Ethyl-2-(4-fluoro­phen­yl)-4-phen­oxy-1H-pyrazol-3(2H)-one

Tara Shahani a, Hoong-Kun Fun a,*,, R Venkat Ragavan b, V Vijayakumar b, M Venkatesh b
PMCID: PMC3051690  PMID: 21523133

Abstract

In the title compound, C17H15FN2O2, the essentially planar pyrazole ring [maximum deviation = 0.026 (1) Å] makes dihedral angles of 72.06 (7) and 33.05 (7)°, with the phenyl and fluoro­benzene rings, respectively. The dihedral angle between the two six-membered rings is 87.88 (7)°. In the crystal, inter­molecular N—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules into layers lying parallel to the bc plane.

Related literature

For pyrazole derivatives and their microbial activity, see: Ragavan et al. (2009, 2010). For the synthesis, see: Ragavan et al. (2009). For related structures, see: Shahani et al. (2009, 2010a ,b ). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-0o475-scheme1.jpg

Experimental

Crystal data

  • C17H15FN2O2

  • M r = 298.31

  • Monoclinic, Inline graphic

  • a = 15.332 (2) Å

  • b = 8.6833 (14) Å

  • c = 11.6066 (19) Å

  • β = 109.916 (3)°

  • V = 1452.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.55 × 0.14 × 0.08 mm

Data collection

  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.947, T max = 0.992

  • 12927 measured reflections

  • 4247 independent reflections

  • 3207 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.119

  • S = 1.05

  • 4247 reflections

  • 204 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811000754/hb5788sup1.cif

e-67-0o475-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000754/hb5788Isup2.hkl

e-67-0o475-Isup2.hkl (208.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2i 0.899 (18) 1.803 (18) 2.6865 (14) 167.1 (16)
C11—H11A⋯F1ii 0.93 2.52 3.3441 (16) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship. VV is grateful to the DST–India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Antibacterial and antifungal activities of the azoles are most widely studied and some of them are in clinical practice as anti-microbial agents. However, the azole-resistant strain had led to the development of new antimicrobial compounds. In particular pyrazole derivatives are extensively studied and used as antimicrobial agents. Pyrazole is an important class of heterocyclic compounds and many pyrazole derivatives are reported to have the broad spectrum of biological properties, such as anti-inflammatory, antifungal, herbicidal,anti-tumour, cytotoxic, molecular modelling, and antiviral activities. Pyrazole derivatives also act as antiangiogenic agents, A3 adenosine receptor antagonists, neuropeptide YY5 receptor antagonists, kinase inhibitor for treatment of type 2 diabetes, hyperlipidemia, obesity, and thrombopiotinmimetics. Recently urea derivatives of pyrazoles have been reported as potent inhibitors of p38 kinase. Since the high electronegativity of halogens (particularly chlorine and fluorine) in the aromatic part of the drug molecules play an important role in enhancing their biological activity, we are interested to have 4-fluoro or 4-chloro substitution in the aryls of 1,5-diaryl pyrazoles. As part of our on-going research aiming the synthesis of new antimicrobial compounds, we have reported the synthesis of novel pyrazole derivatives and their microbial activities (Ragavan et al., 2009; 2010). The structure of the title compound, (I), is presented here.

In the title compound (Fig. 1), the molecule consists of two phenyl (C10—C15 and C1—C6) and one pyrazole (N1/N2/C7—C9) rings, all rings are essentially planar. The pyrazole ring (maximum deviation of 0.026 (1) Å at atom N1) makes dihedral angles of 72.06 (7) and 33.05 (7)°, with phenyl (C10—C15) and fluoro substituted phenyl (C1—C6) rings, respectively. The dihedral angle between the two six-membered rings,(C1—C6) and (C10—C15), is 87.88 (7)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the closely related structures (Shahani et al.,2009; 2010a,b).

In the crystal (Fig. 2), intermolecular N2–H1N2···O2 and C11–H11A···F1 (Table 1) hydrogen bonds link the molecules into two-dimensional arrays parallel to the bc plane.

Experimental

The compound was synthesized using the literature method (Ragavan et al.,2009) and recrystallized using an ethanol-chloroform 1:1 mixture to yield colourless needles of (I). Yield: 61%. M.p.: 441 K.

Refinement

The hydrogen atom bound to the N2 atom was located in a difference map and allow to refine freely [N–H = 0.899 (18) Å]. All other H atoms were positioned geometrically [range of C–H = 0.93 to 0.97 Å] with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed along b axis. Intermolecular hydrogen bonds linked the molecules into two-dimensional arrays parallel to the bc plane. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C17H15FN2O2 F(000) = 624
Mr = 298.31 Dx = 1.364 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2971 reflections
a = 15.332 (2) Å θ = 3.0–33.0°
b = 8.6833 (14) Å µ = 0.10 mm1
c = 11.6066 (19) Å T = 100 K
β = 109.916 (3)° Needle, colourless
V = 1452.8 (4) Å3 0.55 × 0.14 × 0.08 mm
Z = 4

Data collection

Bruker APEXII DUO CCD diffractometer 4247 independent reflections
Radiation source: fine-focus sealed tube 3207 reflections with I > 2σ(I)
graphite Rint = 0.036
φ and ω scans θmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −21→20
Tmin = 0.947, Tmax = 0.992 k = −12→9
12927 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.047P)2 + 0.4776P] where P = (Fo2 + 2Fc2)/3
4247 reflections (Δ/σ)max < 0.001
204 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.77686 (5) 0.90535 (11) 0.09196 (7) 0.0332 (2)
O1 0.22938 (6) 0.55499 (11) 0.07275 (8) 0.0226 (2)
O2 0.40598 (6) 0.72722 (11) 0.20071 (7) 0.0243 (2)
N1 0.41488 (7) 0.72695 (13) 0.00442 (8) 0.0187 (2)
N2 0.36358 (7) 0.66422 (13) −0.10812 (9) 0.0192 (2)
C1 0.55898 (8) 0.70430 (15) −0.03872 (10) 0.0191 (2)
H1A 0.5320 0.6289 −0.0969 0.023*
C2 0.64946 (9) 0.75124 (16) −0.01831 (11) 0.0215 (3)
H2A 0.6836 0.7098 −0.0634 0.026*
C3 0.68736 (8) 0.86072 (16) 0.07039 (11) 0.0222 (3)
C4 0.63952 (9) 0.92659 (15) 0.13937 (11) 0.0215 (3)
H4A 0.6677 0.9992 0.1994 0.026*
C5 0.54850 (8) 0.88198 (15) 0.11691 (10) 0.0200 (3)
H5A 0.5142 0.9261 0.1607 0.024*
C6 0.50869 (8) 0.77049 (14) 0.02820 (10) 0.0172 (2)
C7 0.37115 (8) 0.69697 (15) 0.08861 (10) 0.0187 (2)
C8 0.28708 (8) 0.62287 (15) 0.01905 (10) 0.0190 (2)
C9 0.28418 (8) 0.60586 (15) −0.09962 (10) 0.0190 (2)
C10 0.14644 (8) 0.62813 (16) 0.06414 (11) 0.0204 (3)
C11 0.10224 (9) 0.56911 (18) 0.14043 (11) 0.0254 (3)
H11A 0.1284 0.4881 0.1933 0.030*
C12 0.01814 (10) 0.6329 (2) 0.13677 (13) 0.0337 (4)
H12A −0.0120 0.5947 0.1880 0.040*
C13 −0.02094 (10) 0.7526 (2) 0.05755 (14) 0.0378 (4)
H13A −0.0772 0.7950 0.0554 0.045*
C14 0.02428 (10) 0.8092 (2) −0.01883 (13) 0.0330 (3)
H14A −0.0023 0.8892 −0.0727 0.040*
C15 0.10888 (9) 0.74771 (17) −0.01581 (11) 0.0252 (3)
H15A 0.1394 0.7863 −0.0665 0.030*
C16 0.21135 (9) 0.53400 (17) −0.20637 (11) 0.0246 (3)
H16A 0.1673 0.6127 −0.2491 0.030*
H16B 0.1781 0.4578 −0.1764 0.030*
C17 0.25005 (10) 0.45693 (18) −0.29685 (12) 0.0282 (3)
H17A 0.2009 0.4051 −0.3590 0.042*
H17B 0.2968 0.3836 −0.2542 0.042*
H17C 0.2769 0.5336 −0.3342 0.042*
H1N2 0.3689 (12) 0.706 (2) −0.1764 (16) 0.035 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0199 (4) 0.0497 (6) 0.0311 (4) −0.0092 (4) 0.0103 (3) −0.0079 (4)
O1 0.0193 (4) 0.0301 (5) 0.0232 (4) 0.0039 (4) 0.0136 (3) 0.0076 (4)
O2 0.0251 (4) 0.0367 (6) 0.0138 (4) 0.0009 (4) 0.0100 (3) −0.0019 (3)
N1 0.0179 (5) 0.0274 (6) 0.0124 (4) −0.0018 (4) 0.0071 (4) −0.0017 (4)
N2 0.0192 (5) 0.0275 (6) 0.0120 (4) −0.0024 (4) 0.0067 (4) −0.0009 (4)
C1 0.0208 (5) 0.0212 (6) 0.0166 (5) 0.0005 (5) 0.0080 (4) −0.0013 (4)
C2 0.0211 (6) 0.0265 (7) 0.0200 (5) 0.0019 (5) 0.0109 (5) −0.0001 (5)
C3 0.0179 (5) 0.0281 (7) 0.0202 (5) −0.0016 (5) 0.0060 (4) 0.0021 (5)
C4 0.0220 (6) 0.0243 (6) 0.0174 (5) −0.0009 (5) 0.0059 (4) −0.0019 (4)
C5 0.0217 (6) 0.0237 (6) 0.0159 (5) 0.0031 (5) 0.0082 (4) −0.0002 (4)
C6 0.0174 (5) 0.0209 (6) 0.0143 (5) 0.0013 (4) 0.0067 (4) 0.0027 (4)
C7 0.0203 (5) 0.0224 (6) 0.0160 (5) 0.0042 (5) 0.0097 (4) 0.0019 (4)
C8 0.0178 (5) 0.0244 (6) 0.0177 (5) 0.0016 (5) 0.0099 (4) 0.0023 (4)
C9 0.0181 (5) 0.0225 (6) 0.0177 (5) 0.0016 (5) 0.0078 (4) 0.0015 (4)
C10 0.0163 (5) 0.0283 (7) 0.0175 (5) 0.0002 (5) 0.0070 (4) −0.0029 (4)
C11 0.0191 (6) 0.0394 (8) 0.0193 (6) −0.0026 (5) 0.0087 (5) 0.0010 (5)
C12 0.0207 (6) 0.0588 (11) 0.0263 (6) −0.0031 (7) 0.0142 (5) −0.0045 (6)
C13 0.0218 (6) 0.0590 (11) 0.0344 (7) 0.0097 (7) 0.0119 (6) −0.0071 (7)
C14 0.0295 (7) 0.0401 (9) 0.0288 (7) 0.0129 (6) 0.0090 (6) 0.0007 (6)
C15 0.0246 (6) 0.0314 (7) 0.0221 (6) 0.0039 (6) 0.0110 (5) −0.0006 (5)
C16 0.0211 (6) 0.0321 (7) 0.0207 (6) −0.0027 (5) 0.0071 (5) −0.0019 (5)
C17 0.0301 (7) 0.0347 (8) 0.0194 (6) −0.0042 (6) 0.0078 (5) −0.0055 (5)

Geometric parameters (Å, °)

F1—C3 1.3644 (14) C8—C9 1.3708 (16)
O1—C8 1.3763 (15) C9—C16 1.4928 (17)
O1—C10 1.3941 (15) C10—C15 1.3809 (18)
O2—C7 1.2544 (14) C10—C11 1.3837 (18)
N1—C7 1.3851 (15) C11—C12 1.3907 (19)
N1—N2 1.3862 (13) C11—H11A 0.9300
N1—C6 1.4202 (16) C12—C13 1.382 (2)
N2—C9 1.3529 (16) C12—H12A 0.9300
N2—H1N2 0.899 (18) C13—C14 1.388 (2)
C1—C2 1.3866 (17) C13—H13A 0.9300
C1—C6 1.3915 (17) C14—C15 1.3922 (19)
C1—H1A 0.9300 C14—H14A 0.9300
C2—C3 1.3761 (18) C15—H15A 0.9300
C2—H2A 0.9300 C16—C17 1.5255 (19)
C3—C4 1.3806 (18) C16—H16A 0.9700
C4—C5 1.3848 (17) C16—H16B 0.9700
C4—H4A 0.9300 C17—H17A 0.9600
C5—C6 1.3934 (17) C17—H17B 0.9600
C5—H5A 0.9300 C17—H17C 0.9600
C7—C8 1.4206 (17)
C8—O1—C10 118.93 (10) N2—C9—C16 122.23 (11)
C7—N1—N2 109.59 (10) C8—C9—C16 129.65 (12)
C7—N1—C6 127.91 (9) C15—C10—C11 121.70 (12)
N2—N1—C6 119.98 (9) C15—C10—O1 123.51 (11)
C9—N2—N1 108.32 (9) C11—C10—O1 114.77 (11)
C9—N2—H1N2 124.6 (11) C10—C11—C12 118.95 (13)
N1—N2—H1N2 118.8 (11) C10—C11—H11A 120.5
C2—C1—C6 119.70 (11) C12—C11—H11A 120.5
C2—C1—H1A 120.1 C13—C12—C11 120.48 (14)
C6—C1—H1A 120.1 C13—C12—H12A 119.8
C3—C2—C1 118.28 (12) C11—C12—H12A 119.8
C3—C2—H2A 120.9 C12—C13—C14 119.58 (14)
C1—C2—H2A 120.9 C12—C13—H13A 120.2
F1—C3—C2 118.39 (12) C14—C13—H13A 120.2
F1—C3—C4 118.40 (11) C13—C14—C15 120.79 (14)
C2—C3—C4 123.20 (12) C13—C14—H14A 119.6
C3—C4—C5 118.38 (12) C15—C14—H14A 119.6
C3—C4—H4A 120.8 C10—C15—C14 118.50 (13)
C5—C4—H4A 120.8 C10—C15—H15A 120.8
C4—C5—C6 119.55 (11) C14—C15—H15A 120.8
C4—C5—H5A 120.2 C9—C16—C17 113.48 (11)
C6—C5—H5A 120.2 C9—C16—H16A 108.9
C1—C6—C5 120.86 (11) C17—C16—H16A 108.9
C1—C6—N1 119.90 (11) C9—C16—H16B 108.9
C5—C6—N1 119.23 (11) C17—C16—H16B 108.9
O2—C7—N1 123.71 (11) H16A—C16—H16B 107.7
O2—C7—C8 131.88 (11) C16—C17—H17A 109.5
N1—C7—C8 104.34 (10) C16—C17—H17B 109.5
C9—C8—O1 127.09 (11) H17A—C17—H17B 109.5
C9—C8—C7 109.42 (11) C16—C17—H17C 109.5
O1—C8—C7 122.36 (10) H17A—C17—H17C 109.5
N2—C9—C8 108.11 (10) H17B—C17—H17C 109.5
C7—N1—N2—C9 4.94 (14) O2—C7—C8—C9 −174.87 (14)
C6—N1—N2—C9 168.32 (11) N1—C7—C8—C9 2.11 (14)
C6—C1—C2—C3 1.35 (18) O2—C7—C8—O1 −6.2 (2)
C1—C2—C3—F1 179.00 (11) N1—C7—C8—O1 170.74 (11)
C1—C2—C3—C4 −0.4 (2) N1—N2—C9—C8 −3.48 (14)
F1—C3—C4—C5 179.60 (11) N1—N2—C9—C16 177.94 (12)
C2—C3—C4—C5 −1.0 (2) O1—C8—C9—N2 −167.13 (12)
C3—C4—C5—C6 1.43 (18) C7—C8—C9—N2 0.83 (15)
C2—C1—C6—C5 −0.93 (18) O1—C8—C9—C16 11.3 (2)
C2—C1—C6—N1 177.66 (11) C7—C8—C9—C16 179.27 (13)
C4—C5—C6—C1 −0.49 (18) C8—O1—C10—C15 13.96 (18)
C4—C5—C6—N1 −179.09 (11) C8—O1—C10—C11 −167.62 (11)
C7—N1—C6—C1 137.38 (13) C15—C10—C11—C12 −0.4 (2)
N2—N1—C6—C1 −22.65 (17) O1—C10—C11—C12 −178.89 (12)
C7—N1—C6—C5 −44.01 (18) C10—C11—C12—C13 0.4 (2)
N2—N1—C6—C5 155.96 (11) C11—C12—C13—C14 0.1 (2)
N2—N1—C7—O2 173.06 (12) C12—C13—C14—C15 −0.6 (2)
C6—N1—C7—O2 11.4 (2) C11—C10—C15—C14 −0.1 (2)
N2—N1—C7—C8 −4.24 (13) O1—C10—C15—C14 178.25 (12)
C6—N1—C7—C8 −165.94 (12) C13—C14—C15—C10 0.6 (2)
C10—O1—C8—C9 −87.43 (16) N2—C9—C16—C17 30.45 (18)
C10—O1—C8—C7 106.04 (13) C8—C9—C16—C17 −147.80 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O2i 0.899 (18) 1.803 (18) 2.6865 (14) 167.1 (16)
C11—H11A···F1ii 0.93 2.52 3.3441 (16) 147

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5788).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wiscosin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852–3857.
  6. Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173–1180. [DOI] [PubMed]
  7. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249–o3250. [DOI] [PMC free article] [PubMed]
  8. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010a). Acta Cryst. E66, o142–o143. [DOI] [PMC free article] [PubMed]
  9. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010b). Acta Cryst. E66, o1357–o1358. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811000754/hb5788sup1.cif

e-67-0o475-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000754/hb5788Isup2.hkl

e-67-0o475-Isup2.hkl (208.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES