Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 22;67(Pt 2):m250. doi: 10.1107/S1600536811002431

[(Nitrato-κ2 O,O′)(nitrito-κ2 O,O′)(0.25/1.75)]bis­(1,10-phenanthroline-κ2 N,N′)cadmium(II)

Ezzatollah Najafi a, Mostafa M Amini a, Seik Weng Ng b,*
PMCID: PMC3051692  PMID: 21522904

Abstract

The reaction of cadmium nitrate and sodium nitrite in the presence of 1,10-phenanthroline yields the mixed nitrate–nitrite title complex, [Cd(NO2)1.75(NO3)0.25(C12H8N2)2]. The metal ion is bis-chelated by two N-heterocycles as well as by the nitrate/nitrite ions in a distorted dodeca­hedral CdN4O4 coordination environment. One nitrite group is ordered; the other is disordered with respect to a nitrate group (ratio 0.75:0.25) concerning the O atom that is not involved in bonding to the metal ion.

Related literature

For the crystal structure of [Cd(NO3)2(C12H8N2)2], see: Tadjarodi et al. (2001) and for the crystal structure of [Cd(NO2)2(C12H8N2)2], see: Abedini et al. (2005).graphic file with name e-67-0m250-scheme1.jpg

Experimental

Crystal data

  • [Cd(NO2)1.75(NO3)0.25(C12H8N2)2]

  • M r = 568.83

  • Triclinic, Inline graphic

  • a = 9.1470 (4) Å

  • b = 10.1866 (4) Å

  • c = 13.0057 (6) Å

  • α = 76.953 (4)°

  • β = 77.270 (4)°

  • γ = 70.404 (4)°

  • V = 1098.27 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Agilent Technologies SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010) T min = 0.745, T max = 0.903

  • 8702 measured reflections

  • 4852 independent reflections

  • 4256 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.073

  • S = 1.02

  • 4852 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811002431/wm2452sup1.cif

e-67-0m250-sup1.cif (26.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002431/wm2452Isup2.hkl

e-67-0m250-Isup2.hkl (237.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—O3 2.355 (2)
Cd1—N6 2.390 (2)
Cd1—N4 2.393 (2)
Cd1—N3 2.418 (2)
Cd1—O1 2.4547 (19)
Cd1—O4 2.503 (2)
Cd1—O2 2.5041 (19)
Cd1—N5 2.510 (2)

Acknowledgments

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

We had previously reported the structure of the 1,10-phenanthroline adduct of cadmium nitrate. In the corresponding structure, the cadmium ion, situated on a twofold rotation axis, shows eightfold coordination, which is somewhat less common (Tadjarodi et al., 2001). The compound is conveniently synthesized by the direct addition of 1,10-phenanthroline to a cadmium nitrate solution. In a similar reaction, but when nitrite ions present, a mixed nitrate/nitrite compound is obtained.

In the title compound, Cd(NO2)1.75(NO3)0.25(C12H8N2)2 (Scheme I), the metal ion also exists in an eight-coordinate distorted dodecahedral CdN4O4 geometry (Fig. 1). The metal ion is bis-chelated by two N-heterocycles as well as by the nitrate/nitrite ions. The molecule lies on a general position, and one nitrite group is disordered with respect to a nitrate group (ratio 0.75:0.25).

Experimental

Cadmium nitrate (1 mmol), sodium nitrite (1 mmol) and 1,10-phenanthroline (1 mmol) were loaded into a convection tube. The tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm of the tube after several days.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The structure, when refined as a dinitrite, had a high remaining peak approximately 1.2 Å away from one of the two N atoms of the nitrite groups. This site was allow to refine as an O atom of a disordered nitrate group. As the occupancy refined to nearly 1/4, its occupancy was eventually fixed as 0.25.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of Cd(NO2)1.75(NO3)0.25(C12H8N2)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Cd(NO2)1.75(NO3)0.25(C12H8N2)2] Z = 2
Mr = 568.83 F(000) = 568
Triclinic, P1 Dx = 1.720 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.1470 (4) Å Cell parameters from 4883 reflections
b = 10.1866 (4) Å θ = 2.4–29.3°
c = 13.0057 (6) Å µ = 1.04 mm1
α = 76.953 (4)° T = 100 K
β = 77.270 (4)° Irregular, colorless
γ = 70.404 (4)° 0.30 × 0.20 × 0.10 mm
V = 1098.27 (8) Å3

Data collection

Agilent Technologies SuperNova Dual diffractometer with an Atlas detector 4852 independent reflections
Radiation source: SuperNova X-ray Source 4256 reflections with I > 2σ(I)
Mirror Rint = 0.032
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.4°
ω scans h = −10→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010) k = −13→11
Tmin = 0.745, Tmax = 0.903 l = −16→12
8702 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.1342P] where P = (Fo2 + 2Fc2)/3
4852 reflections (Δ/σ)max = 0.001
325 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.69 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cd1 0.55052 (2) 0.243966 (18) 0.241633 (15) 0.01614 (7)
N1 0.7446 (3) −0.0427 (2) 0.3117 (2) 0.0230 (5)
N2 0.8042 (3) 0.3662 (3) 0.1701 (2) 0.0297 (6)
N3 0.4863 (3) 0.2130 (2) 0.07978 (17) 0.0169 (5)
N4 0.3528 (3) 0.1267 (2) 0.28117 (17) 0.0154 (5)
N5 0.3074 (3) 0.4518 (2) 0.22889 (17) 0.0178 (5)
N6 0.4512 (3) 0.3368 (2) 0.40496 (18) 0.0192 (5)
O1 0.7414 (2) 0.01355 (19) 0.21528 (15) 0.0232 (4)
O2 0.6588 (2) 0.0353 (2) 0.37712 (15) 0.0244 (5)
O3 0.6973 (3) 0.3783 (2) 0.11795 (17) 0.0324 (5)
O4 0.7905 (3) 0.2957 (2) 0.26214 (17) 0.0311 (5)
O5 0.9091 (12) 0.4103 (10) 0.1371 (8) 0.042 (2) 0.25
C1 0.5549 (4) 0.2514 (3) −0.0180 (2) 0.0207 (6)
H1 0.6401 0.2882 −0.0259 0.025*
C2 0.5079 (4) 0.2403 (3) −0.1101 (2) 0.0245 (7)
H2 0.5599 0.2697 −0.1788 0.029*
C3 0.3864 (4) 0.1866 (3) −0.1000 (2) 0.0214 (6)
H3 0.3534 0.1778 −0.1617 0.026*
C4 0.3102 (3) 0.1446 (3) 0.0025 (2) 0.0172 (6)
C5 0.3661 (3) 0.1595 (2) 0.0909 (2) 0.0150 (5)
C6 0.1825 (3) 0.0874 (3) 0.0203 (2) 0.0212 (6)
H6 0.1455 0.0768 −0.0392 0.025*
C7 0.1132 (4) 0.0480 (3) 0.1201 (2) 0.0220 (6)
H7 0.0260 0.0133 0.1297 0.026*
C8 0.1691 (3) 0.0577 (3) 0.2120 (2) 0.0181 (6)
C9 0.2942 (3) 0.1139 (2) 0.1978 (2) 0.0151 (6)
C10 0.1059 (4) 0.0116 (3) 0.3171 (2) 0.0231 (6)
H10 0.0202 −0.0261 0.3305 0.028*
C11 0.1695 (3) 0.0216 (3) 0.4007 (2) 0.0224 (6)
H11 0.1302 −0.0116 0.4722 0.027*
C12 0.2919 (3) 0.0807 (3) 0.3790 (2) 0.0193 (6)
H12 0.3337 0.0884 0.4374 0.023*
C13 0.2348 (4) 0.5050 (3) 0.1442 (2) 0.0208 (6)
H13 0.2824 0.4683 0.0798 0.025*
C14 0.0912 (4) 0.6131 (3) 0.1453 (2) 0.0242 (7)
H14 0.0419 0.6469 0.0833 0.029*
C15 0.0235 (4) 0.6689 (3) 0.2363 (2) 0.0246 (7)
H15 −0.0732 0.7429 0.2381 0.029*
C16 0.0972 (3) 0.6166 (3) 0.3281 (2) 0.0195 (6)
C17 0.2391 (3) 0.5055 (3) 0.3202 (2) 0.0171 (6)
C18 0.0342 (4) 0.6698 (3) 0.4263 (2) 0.0240 (7)
H18 −0.0612 0.7451 0.4309 0.029*
C19 0.1074 (4) 0.6156 (3) 0.5130 (2) 0.0240 (7)
H19 0.0644 0.6547 0.5768 0.029*
C20 0.2491 (4) 0.4999 (3) 0.5094 (2) 0.0209 (6)
C21 0.3163 (3) 0.4449 (3) 0.4137 (2) 0.0175 (6)
C22 0.3269 (4) 0.4374 (3) 0.5986 (2) 0.0242 (7)
H22 0.2855 0.4706 0.6648 0.029*
C23 0.4628 (4) 0.3281 (3) 0.5883 (2) 0.0269 (7)
H23 0.5165 0.2837 0.6477 0.032*
C24 0.5216 (4) 0.2824 (3) 0.4898 (2) 0.0233 (6)
H24 0.6177 0.2080 0.4836 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.01776 (13) 0.01855 (11) 0.01235 (11) −0.00468 (8) −0.00285 (8) −0.00377 (8)
N1 0.0219 (14) 0.0227 (12) 0.0237 (14) −0.0033 (10) −0.0042 (11) −0.0069 (11)
N2 0.0284 (17) 0.0363 (15) 0.0304 (15) −0.0163 (13) 0.0004 (13) −0.0124 (12)
N3 0.0190 (13) 0.0177 (11) 0.0145 (12) −0.0060 (9) −0.0005 (10) −0.0050 (9)
N4 0.0149 (13) 0.0173 (11) 0.0116 (11) −0.0024 (9) −0.0016 (10) −0.0021 (9)
N5 0.0247 (14) 0.0156 (11) 0.0137 (12) −0.0073 (10) −0.0027 (10) −0.0021 (9)
N6 0.0219 (14) 0.0186 (11) 0.0189 (12) −0.0043 (10) −0.0082 (11) −0.0043 (10)
O1 0.0218 (12) 0.0298 (10) 0.0171 (11) −0.0051 (9) −0.0027 (9) −0.0063 (9)
O2 0.0224 (12) 0.0309 (11) 0.0177 (11) −0.0022 (9) −0.0037 (9) −0.0081 (9)
O3 0.0370 (15) 0.0430 (13) 0.0277 (12) −0.0244 (11) −0.0071 (11) −0.0057 (10)
O4 0.0328 (14) 0.0357 (12) 0.0275 (13) −0.0096 (10) −0.0054 (11) −0.0110 (10)
O5 0.031 (6) 0.053 (6) 0.054 (6) −0.035 (5) 0.001 (5) −0.009 (5)
C1 0.0216 (17) 0.0242 (14) 0.0180 (15) −0.0102 (12) −0.0011 (12) −0.0035 (12)
C2 0.0307 (19) 0.0293 (15) 0.0130 (14) −0.0130 (13) 0.0029 (13) −0.0027 (12)
C3 0.0274 (18) 0.0234 (14) 0.0154 (14) −0.0083 (12) −0.0044 (13) −0.0056 (12)
C4 0.0192 (16) 0.0164 (13) 0.0161 (14) −0.0030 (11) −0.0045 (12) −0.0048 (11)
C5 0.0160 (15) 0.0132 (12) 0.0140 (13) −0.0003 (10) −0.0034 (11) −0.0043 (10)
C6 0.0227 (17) 0.0243 (14) 0.0201 (15) −0.0068 (12) −0.0091 (13) −0.0056 (12)
C7 0.0182 (16) 0.0262 (14) 0.0248 (16) −0.0086 (12) −0.0045 (13) −0.0062 (13)
C8 0.0148 (15) 0.0194 (13) 0.0188 (14) −0.0032 (11) −0.0024 (12) −0.0038 (11)
C9 0.0148 (15) 0.0119 (12) 0.0143 (13) 0.0020 (10) −0.0024 (11) −0.0026 (10)
C10 0.0166 (16) 0.0298 (15) 0.0225 (16) −0.0090 (12) −0.0013 (13) −0.0021 (13)
C11 0.0176 (16) 0.0305 (15) 0.0147 (14) −0.0076 (12) 0.0008 (12) 0.0021 (12)
C12 0.0162 (15) 0.0235 (14) 0.0151 (14) −0.0032 (11) −0.0011 (12) −0.0027 (11)
C13 0.0279 (18) 0.0167 (13) 0.0167 (14) −0.0053 (12) −0.0049 (13) −0.0012 (11)
C14 0.0268 (18) 0.0201 (14) 0.0212 (16) −0.0029 (12) −0.0088 (14) 0.0038 (12)
C15 0.0252 (18) 0.0171 (13) 0.0278 (17) −0.0012 (12) −0.0071 (14) −0.0015 (12)
C16 0.0213 (17) 0.0152 (13) 0.0188 (15) −0.0046 (11) 0.0010 (12) −0.0020 (11)
C17 0.0195 (16) 0.0157 (13) 0.0165 (14) −0.0073 (11) 0.0004 (12) −0.0032 (11)
C18 0.0243 (17) 0.0176 (13) 0.0275 (17) −0.0053 (12) 0.0013 (14) −0.0053 (12)
C19 0.0297 (18) 0.0203 (14) 0.0213 (16) −0.0088 (13) 0.0046 (13) −0.0088 (12)
C20 0.0231 (17) 0.0207 (14) 0.0205 (15) −0.0101 (12) −0.0005 (13) −0.0038 (12)
C21 0.0214 (16) 0.0161 (13) 0.0155 (14) −0.0086 (11) −0.0007 (12) −0.0014 (11)
C22 0.0327 (19) 0.0289 (15) 0.0147 (14) −0.0134 (14) 0.0005 (13) −0.0087 (12)
C23 0.035 (2) 0.0279 (15) 0.0201 (16) −0.0068 (14) −0.0116 (14) −0.0051 (13)
C24 0.0240 (17) 0.0238 (14) 0.0226 (16) −0.0036 (12) −0.0077 (13) −0.0064 (12)

Geometric parameters (Å, °)

Cd1—O3 2.355 (2) C6—H6 0.9500
Cd1—N6 2.390 (2) C7—C8 1.434 (4)
Cd1—N4 2.393 (2) C7—H7 0.9500
Cd1—N3 2.418 (2) C8—C10 1.403 (4)
Cd1—O1 2.4547 (19) C8—C9 1.403 (4)
Cd1—O4 2.503 (2) C10—C11 1.377 (4)
Cd1—O2 2.5041 (19) C10—H10 0.9500
Cd1—N5 2.510 (2) C11—C12 1.391 (4)
N1—O2 1.250 (3) C11—H11 0.9500
N1—O1 1.258 (3) C12—H12 0.9500
N2—O5 1.151 (9) C13—C14 1.403 (4)
N2—O4 1.254 (3) C13—H13 0.9500
N2—O3 1.267 (3) C14—C15 1.362 (4)
N3—C1 1.323 (3) C14—H14 0.9500
N3—C5 1.349 (3) C15—C16 1.410 (4)
N4—C12 1.320 (3) C15—H15 0.9500
N4—C9 1.359 (3) C16—C17 1.409 (4)
N5—C13 1.326 (3) C16—C18 1.428 (4)
N5—C17 1.356 (3) C17—C21 1.451 (4)
N6—C24 1.319 (3) C18—C19 1.351 (4)
N6—C21 1.353 (4) C18—H18 0.9500
C1—C2 1.398 (4) C19—C20 1.430 (4)
C1—H1 0.9500 C19—H19 0.9500
C2—C3 1.365 (4) C20—C22 1.409 (4)
C2—H2 0.9500 C20—C21 1.410 (4)
C3—C4 1.406 (4) C22—C23 1.367 (4)
C3—H3 0.9500 C22—H22 0.9500
C4—C5 1.414 (3) C23—C24 1.395 (4)
C4—C6 1.426 (4) C23—H23 0.9500
C5—C9 1.447 (4) C24—H24 0.9500
C6—C7 1.350 (4)
O3—Cd1—N6 111.58 (7) N3—C5—C4 122.6 (2)
O3—Cd1—N4 149.81 (7) N3—C5—C9 118.3 (2)
N6—Cd1—N4 90.18 (8) C4—C5—C9 119.1 (2)
O3—Cd1—N3 81.88 (7) C7—C6—C4 121.2 (2)
N6—Cd1—N3 145.83 (8) C7—C6—H6 119.4
N4—Cd1—N3 68.85 (7) C4—C6—H6 119.4
O3—Cd1—O1 95.42 (7) C6—C7—C8 121.0 (3)
N6—Cd1—O1 127.58 (7) C6—C7—H7 119.5
N4—Cd1—O1 86.59 (7) C8—C7—H7 119.5
N3—Cd1—O1 79.44 (7) C10—C8—C9 117.5 (2)
O3—Cd1—O4 51.44 (7) C10—C8—C7 123.1 (3)
N6—Cd1—O4 81.44 (8) C9—C8—C7 119.4 (3)
N4—Cd1—O4 157.42 (7) N4—C9—C8 122.6 (2)
N3—Cd1—O4 127.41 (8) N4—C9—C5 117.8 (2)
O1—Cd1—O4 82.14 (7) C8—C9—C5 119.6 (2)
O3—Cd1—O2 125.56 (7) C11—C10—C8 119.2 (3)
N6—Cd1—O2 77.83 (7) C11—C10—H10 120.4
N4—Cd1—O2 78.09 (7) C8—C10—H10 120.4
N3—Cd1—O2 120.90 (6) C10—C11—C12 119.3 (3)
O1—Cd1—O2 50.33 (6) C10—C11—H11 120.4
O4—Cd1—O2 79.66 (7) C12—C11—H11 120.4
O3—Cd1—N5 89.71 (8) N4—C12—C11 123.0 (3)
N6—Cd1—N5 67.54 (7) N4—C12—H12 118.5
N4—Cd1—N5 79.26 (7) C11—C12—H12 118.5
N3—Cd1—N5 81.80 (7) N5—C13—C14 123.1 (3)
O1—Cd1—N5 159.63 (7) N5—C13—H13 118.4
O4—Cd1—N5 115.94 (7) C14—C13—H13 118.4
O2—Cd1—N5 138.17 (7) C15—C14—C13 119.1 (3)
O2—N1—O1 114.4 (2) C15—C14—H14 120.5
O5—N2—O4 121.3 (5) C13—C14—H14 120.5
O5—N2—O3 124.7 (6) C14—C15—C16 119.8 (3)
O4—N2—O3 113.9 (2) C14—C15—H15 120.1
C1—N3—C5 118.4 (2) C16—C15—H15 120.1
C1—N3—Cd1 124.62 (18) C17—C16—C15 117.0 (3)
C5—N3—Cd1 116.90 (17) C17—C16—C18 119.7 (3)
C12—N4—C9 118.3 (2) C15—C16—C18 123.2 (3)
C12—N4—Cd1 123.87 (17) N5—C17—C16 122.9 (2)
C9—N4—Cd1 117.69 (17) N5—C17—C21 118.1 (2)
C13—N5—C17 118.0 (2) C16—C17—C21 119.0 (3)
C13—N5—Cd1 125.85 (19) C19—C18—C16 121.5 (3)
C17—N5—Cd1 115.91 (17) C19—C18—H18 119.3
C24—N6—C21 118.0 (3) C16—C18—H18 119.3
C24—N6—Cd1 121.76 (19) C18—C19—C20 120.5 (3)
C21—N6—Cd1 120.25 (17) C18—C19—H19 119.7
N1—O1—Cd1 98.71 (15) C20—C19—H19 119.7
N1—O2—Cd1 96.51 (15) C22—C20—C21 117.6 (3)
N2—O3—Cd1 100.74 (17) C22—C20—C19 122.5 (3)
N2—O4—Cd1 93.91 (16) C21—C20—C19 119.9 (3)
N3—C1—C2 123.1 (3) N6—C21—C20 122.6 (2)
N3—C1—H1 118.5 N6—C21—C17 118.0 (2)
C2—C1—H1 118.5 C20—C21—C17 119.3 (3)
C3—C2—C1 119.1 (3) C23—C22—C20 119.0 (3)
C3—C2—H2 120.4 C23—C22—H22 120.5
C1—C2—H2 120.4 C20—C22—H22 120.5
C2—C3—C4 119.6 (2) C22—C23—C24 119.3 (3)
C2—C3—H3 120.2 C22—C23—H23 120.4
C4—C3—H3 120.2 C24—C23—H23 120.4
C3—C4—C5 117.2 (2) N6—C24—C23 123.5 (3)
C3—C4—C6 123.3 (2) N6—C24—H24 118.2
C5—C4—C6 119.5 (3) C23—C24—H24 118.2
O3—Cd1—N3—C1 9.7 (2) O3—N2—O4—Cd1 1.6 (2)
N6—Cd1—N3—C1 126.5 (2) O3—Cd1—O4—N2 −0.98 (16)
N4—Cd1—N3—C1 −177.9 (2) N6—Cd1—O4—N2 −127.53 (17)
O1—Cd1—N3—C1 −87.4 (2) N4—Cd1—O4—N2 163.19 (18)
O4—Cd1—N3—C1 −16.0 (2) N3—Cd1—O4—N2 32.21 (19)
O2—Cd1—N3—C1 −117.2 (2) O1—Cd1—O4—N2 102.42 (17)
N5—Cd1—N3—C1 100.5 (2) O2—Cd1—O4—N2 153.38 (17)
O3—Cd1—N3—C5 −166.68 (19) N5—Cd1—O4—N2 −67.72 (18)
N6—Cd1—N3—C5 −49.9 (2) C5—N3—C1—C2 0.6 (4)
N4—Cd1—N3—C5 5.81 (17) Cd1—N3—C1—C2 −175.7 (2)
O1—Cd1—N3—C5 96.22 (18) N3—C1—C2—C3 −0.4 (4)
O4—Cd1—N3—C5 167.70 (16) C1—C2—C3—C4 0.4 (4)
O2—Cd1—N3—C5 66.5 (2) C2—C3—C4—C5 −0.5 (4)
N5—Cd1—N3—C5 −75.80 (18) C2—C3—C4—C6 −179.9 (3)
O3—Cd1—N4—C12 −167.40 (19) C1—N3—C5—C4 −0.7 (4)
N6—Cd1—N4—C12 −30.0 (2) Cd1—N3—C5—C4 175.90 (19)
N3—Cd1—N4—C12 177.7 (2) C1—N3—C5—C9 178.3 (2)
O1—Cd1—N4—C12 97.7 (2) Cd1—N3—C5—C9 −5.2 (3)
O4—Cd1—N4—C12 37.7 (3) C3—C4—C5—N3 0.7 (4)
O2—Cd1—N4—C12 47.6 (2) C6—C4—C5—N3 −179.9 (2)
N5—Cd1—N4—C12 −97.0 (2) C3—C4—C5—C9 −178.3 (2)
O3—Cd1—N4—C9 8.8 (3) C6—C4—C5—C9 1.2 (4)
N6—Cd1—N4—C9 146.27 (18) C3—C4—C6—C7 179.8 (3)
N3—Cd1—N4—C9 −6.09 (17) C5—C4—C6—C7 0.4 (4)
O1—Cd1—N4—C9 −86.08 (18) C4—C6—C7—C8 −2.2 (4)
O4—Cd1—N4—C9 −146.08 (19) C6—C7—C8—C10 −176.7 (3)
O2—Cd1—N4—C9 −136.21 (19) C6—C7—C8—C9 2.3 (4)
N5—Cd1—N4—C9 79.19 (18) C12—N4—C9—C8 1.8 (4)
O3—Cd1—N5—C13 68.5 (2) Cd1—N4—C9—C8 −174.59 (18)
N6—Cd1—N5—C13 −177.9 (2) C12—N4—C9—C5 −177.6 (2)
N4—Cd1—N5—C13 −83.2 (2) Cd1—N4—C9—C5 6.0 (3)
N3—Cd1—N5—C13 −13.3 (2) C10—C8—C9—N4 −1.0 (4)
O1—Cd1—N5—C13 −36.4 (3) C7—C8—C9—N4 179.8 (2)
O4—Cd1—N5—C13 114.5 (2) C10—C8—C9—C5 178.4 (2)
O2—Cd1—N5—C13 −141.39 (19) C7—C8—C9—C5 −0.7 (4)
O3—Cd1—N5—C17 −117.09 (18) N3—C5—C9—N4 −0.5 (3)
N6—Cd1—N5—C17 −3.51 (17) C4—C5—C9—N4 178.5 (2)
N4—Cd1—N5—C17 91.18 (19) N3—C5—C9—C8 −179.9 (2)
N3—Cd1—N5—C17 161.08 (19) C4—C5—C9—C8 −1.0 (4)
O1—Cd1—N5—C17 138.0 (2) C9—C8—C10—C11 −0.8 (4)
O4—Cd1—N5—C17 −71.16 (19) C7—C8—C10—C11 178.3 (3)
O2—Cd1—N5—C17 33.0 (2) C8—C10—C11—C12 1.8 (4)
O3—Cd1—N6—C24 −99.0 (2) C9—N4—C12—C11 −0.8 (4)
N4—Cd1—N6—C24 102.5 (2) Cd1—N4—C12—C11 175.4 (2)
N3—Cd1—N6—C24 152.85 (19) C10—C11—C12—N4 −1.0 (4)
O1—Cd1—N6—C24 16.6 (2) C17—N5—C13—C14 −0.4 (4)
O4—Cd1—N6—C24 −56.5 (2) Cd1—N5—C13—C14 173.9 (2)
O2—Cd1—N6—C24 24.7 (2) N5—C13—C14—C15 1.4 (4)
N5—Cd1—N6—C24 −179.2 (2) C13—C14—C15—C16 −0.7 (4)
O3—Cd1—N6—C21 83.4 (2) C14—C15—C16—C17 −0.9 (4)
N4—Cd1—N6—C21 −75.1 (2) C14—C15—C16—C18 179.7 (3)
N3—Cd1—N6—C21 −24.8 (3) C13—N5—C17—C16 −1.4 (4)
O1—Cd1—N6—C21 −160.97 (17) Cd1—N5—C17—C16 −176.21 (19)
O4—Cd1—N6—C21 125.9 (2) C13—N5—C17—C21 178.5 (2)
O2—Cd1—N6—C21 −152.9 (2) Cd1—N5—C17—C21 3.7 (3)
N5—Cd1—N6—C21 3.16 (18) C15—C16—C17—N5 2.0 (4)
O2—N1—O1—Cd1 −1.1 (2) C18—C16—C17—N5 −178.5 (2)
O3—Cd1—O1—N1 133.52 (16) C15—C16—C17—C21 −177.9 (2)
N6—Cd1—O1—N1 10.90 (19) C18—C16—C17—C21 1.6 (4)
N4—Cd1—O1—N1 −76.70 (16) C17—C16—C18—C19 −0.3 (4)
N3—Cd1—O1—N1 −145.80 (16) C15—C16—C18—C19 179.2 (3)
O4—Cd1—O1—N1 83.69 (16) C16—C18—C19—C20 −1.6 (4)
O2—Cd1—O1—N1 0.64 (14) C18—C19—C20—C22 −178.1 (3)
N5—Cd1—O1—N1 −122.5 (2) C18—C19—C20—C21 2.2 (4)
O1—N1—O2—Cd1 1.1 (2) C24—N6—C21—C20 −0.4 (4)
O3—Cd1—O2—N1 −64.39 (17) Cd1—N6—C21—C20 177.34 (19)
N6—Cd1—O2—N1 −172.34 (17) C24—N6—C21—C17 179.7 (2)
N4—Cd1—O2—N1 94.86 (16) Cd1—N6—C21—C17 −2.6 (3)
N3—Cd1—O2—N1 38.65 (18) C22—C20—C21—N6 −0.5 (4)
O1—Cd1—O2—N1 −0.64 (14) C19—C20—C21—N6 179.1 (2)
O4—Cd1—O2—N1 −88.97 (16) C22—C20—C21—C17 179.4 (2)
N5—Cd1—O2—N1 153.45 (15) C19—C20—C21—C17 −0.9 (4)
O5—N2—O3—Cd1 175.7 (6) N5—C17—C21—N6 −0.9 (4)
O4—N2—O3—Cd1 −1.7 (3) C16—C17—C21—N6 179.0 (2)
N6—Cd1—O3—N2 59.66 (19) N5—C17—C21—C20 179.1 (2)
N4—Cd1—O3—N2 −167.00 (16) C16—C17—C21—C20 −1.0 (4)
N3—Cd1—O3—N2 −152.96 (18) C21—C20—C22—C23 0.4 (4)
O1—Cd1—O3—N2 −74.47 (18) C19—C20—C22—C23 −179.3 (3)
O4—Cd1—O3—N2 0.99 (16) C20—C22—C23—C24 0.6 (4)
O2—Cd1—O3—N2 −30.6 (2) C21—N6—C24—C23 1.5 (4)
N5—Cd1—O3—N2 125.28 (18) Cd1—N6—C24—C23 −176.2 (2)
O5—N2—O4—Cd1 −175.9 (6) C22—C23—C24—N6 −1.6 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2452).

References

  1. Abedini, J., Morsali, A. & Kempe, R. (2005). J. Coord. Chem. 58, 1161–1167.
  2. Agilent Technologies (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  3. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Tadjarodi, A., Taeb, A. & Ng, S. W. (2001). Main Group Met. Chem. 24, 805–806.
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811002431/wm2452sup1.cif

e-67-0m250-sup1.cif (26.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002431/wm2452Isup2.hkl

e-67-0m250-Isup2.hkl (237.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES