Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):o424. doi: 10.1107/S1600536811000961

3-(4-Hy­droxy-3-meth­oxy­phen­yl)acrylic acid–2,3,5,6-tetra­methyl­pyrazine (2/1)

Zaiyou Tan a,*, Erjia Zhu a, Lin Luo a, Zhuohui Lin a, Ruisi Yan a
PMCID: PMC3051719  PMID: 21523092

Abstract

The asymmetric unit of the title compound, C8H12N2·2C10H10O4, contains a tetra­methyl­pyrazine mol­ecule, situated about an inversion center, and two substituted acrylic acid derivatives. The dihedral angle between the phenyl and pyrazine rings is 69.45 (9)°. In the crystal, inter­molecular O—H⋯O, O—H⋯N hydrogen bonds and weak C—H⋯O inter­actions lead to the formation of a supra­molecular network. The acrylic acid side chain is positionally disordered [occupancy ratio 0.852 (7):0.148 (7)].

Related literature

For the synthesis of the title compound, see: Tan (2004). For the biological properties of the title compound, see: Tan et al. (2003).graphic file with name e-67-0o424-scheme1.jpg

Experimental

Crystal data

  • 0.5C8H12N2·C10H10O4

  • M r = 262.28

  • Monoclinic, Inline graphic

  • a = 9.4696 (7) Å

  • b = 5.7641 (4) Å

  • c = 24.3737 (15) Å

  • β = 93.654 (6)°

  • V = 1327.70 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 100 K

  • 0.20 × 0.05 × 0.05 mm

Data collection

  • Oxford Diffraction Xcalibur Onyx Nova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.953, T max = 0.961

  • 4780 measured reflections

  • 2398 independent reflections

  • 2004 reflections with I > 2σi(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.156

  • S = 1.09

  • 2398 reflections

  • 208 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811000961/su2237sup1.cif

e-67-0o424-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000961/su2237Isup2.hkl

e-67-0o424-Isup2.hkl (117.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.84 1.79 2.613 (5) 167
O4—H4⋯N1 0.82 1.97 2.749 (2) 158
C3—H3B⋯O4ii 0.98 2.58 3.553 (3) 174
C14—H14B⋯O4ii 0.98 2.59 3.465 (2) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Science and Technology Project of the Government of Guangdong Province, China (grant No. 2009B080701025) and thank Professor Xiaopeng Hu of Sun Yat-Sen University for his help.

supplementary crystallographic information

Comment

The title compound, tetramethylpyrazine ferulate is a pharmacologically significant compound which we found in some prescriptions of traditional Chinese medicine, and which are used to treat stroke patients. In both the invivo and invitro experiments, tetramethylpyrazine ferulate has a remarkable inhibitory effect on ADP induced platelet aggregation (Tan et al., 2003). In order to study further its pharmacological effects the title compound was synthesized by the reaction of 3-(4-hydroxy-3-methoxyphenyl)-2-acrylicacid with tetrathylpyrazine, and its crystal structure is reported on herein.

X-ray crystallographic analysis confirmed the molecular structure and the atom connectivity for the title compound, as illustrated in Fig. 1. The dihedral angle between the mean planes of the pyrazine ring and phenyl ring (C8—C13) is 69.45 (9)°.

In the crystal intermolecular O—H···N hydrogen bonds and weak C—H···O interactions are observed, leading to the formation of a supra-molecular network (Table 1).

Experimental

The title compound was synthesized according to the published procedure (Tan, 2004). Tetramethylpyrazine (2.8 g) was heated with 3-(4-hydroxy-3-methoxyphenyl)-2-acrylicacid (4.0 g) in acetone (45 ml). After refluxing at 333 K for 1 h, the reaction mixture was left to stand for several days, and yellow crystals were finally isolated.

Refinement

The acid side chain is positionally disordered: occupancy of atoms C6/C6A, C/C5A, O1/O1A and O2/O2A were refined to be 0.852 (7)/0.148 (7). The following restraints were also applied: DFIX 1.32. 02 C7 C6 C7 C6A; DFIX 1.45. 02 C6 C5 C6A C5A; EADP C5 C5A. The OH and C-bound H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 - 0.84 Å, C—H = 0.95 and 0.98Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

A view of the centrosymmmetric tetramethylpyrazine molecule and one of the ferulate molecules of the title compound. Displacement ellipsoids are drawn at the 50% probability level [Symmetry code: (a) = -x, -y, -z + 1; only the major component of the disordered acrylicacid side chain is shown].

Crystal data

0.5C8H12N2·C10H10O4 F(000) = 556
Mr = 262.28 Dx = 1.312 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2yn Cell parameters from 2625 reflections
a = 9.4696 (7) Å θ = 3.6–71.3°
b = 5.7641 (4) Å µ = 0.80 mm1
c = 24.3737 (15) Å T = 100 K
β = 93.654 (6)° Plate, yellow
V = 1327.70 (16) Å3 0.20 × 0.05 × 0.05 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Onyx Nova diffractometer 2398 independent reflections
Radiation source: fine-focus sealed tube 2004 reflections with I > 2σi(I)
graphite Rint = 0.030
Detector resolution: 8.2417 pixels mm-1 θmax = 68.2°, θmin = 3.6°
ω scans h = −6→11
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −6→6
Tmin = 0.953, Tmax = 0.961 l = −29→29
4780 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0848P)2 + 0.4876P] where P = (Fo2 + 2Fc2)/3
2398 reflections (Δ/σ)max = 0.003
208 parameters Δρmax = 0.63 e Å3
4 restraints Δρmin = −0.40 e Å3

Special details

Experimental. CrysAlisPro (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 −0.0744 (5) 0.5740 (6) 0.06036 (17) 0.0523 (10) 0.852 (7)
O2 0.0563 (4) 0.2666 (5) 0.03930 (15) 0.0489 (9) 0.852 (7)
O3 −0.11323 (15) 0.0544 (3) 0.33773 (5) 0.0432 (4)
O4 0.04554 (15) −0.3292 (2) 0.35223 (6) 0.0444 (5)
C5 −0.0143 (5) 0.3836 (9) 0.07299 (14) 0.0391 (11) 0.852 (7)
C6 −0.0257 (2) 0.2939 (4) 0.12865 (9) 0.0392 (7) 0.852 (7)
C7 0.0333 (2) 0.1014 (4) 0.14611 (9) 0.0506 (7)
C8 0.0286 (2) −0.0041 (4) 0.20015 (8) 0.0404 (6)
C9 −0.0448 (2) 0.0919 (3) 0.24314 (8) 0.0375 (6)
C10 −0.04259 (19) −0.0175 (3) 0.29389 (7) 0.0334 (5)
C11 0.03695 (19) −0.2208 (3) 0.30294 (7) 0.0347 (5)
C12 0.1057 (2) −0.3180 (4) 0.26015 (8) 0.0395 (6)
C13 0.1010 (2) −0.2104 (4) 0.20929 (8) 0.0416 (6)
C14 −0.2088 (2) 0.2438 (4) 0.32912 (9) 0.0462 (7)
O1A −0.051 (2) 0.484 (4) 0.0621 (8) 0.045 (6) 0.148 (7)
O2A 0.1074 (19) 0.249 (3) 0.0201 (7) 0.054 (5) 0.148 (7)
C5A 0.028 (3) 0.322 (5) 0.0629 (11) 0.0391 (11) 0.148 (7)
C6A 0.0587 (13) 0.162 (2) 0.1065 (5) 0.038 (4) 0.148 (7)
N1 0.00905 (17) −0.1036 (3) 0.44970 (6) 0.0393 (5)
C1 0.0891 (2) 0.0814 (4) 0.46363 (8) 0.0383 (6)
C2 −0.0802 (2) −0.1871 (3) 0.48531 (8) 0.0378 (6)
C3 0.1847 (2) 0.1711 (4) 0.42178 (9) 0.0479 (7)
C4 −0.1659 (2) −0.3952 (4) 0.46761 (10) 0.0503 (7)
H4 0.01920 −0.24080 0.37590 0.0670*
H6 −0.07890 0.38050 0.15330 0.0470* 0.852 (7)
H2 0.05430 0.33540 0.00890 0.0730* 0.852 (7)
H14A −0.27540 0.20980 0.29770 0.0690*
H14B −0.15560 0.38480 0.32160 0.0690*
H14C −0.26120 0.26690 0.36210 0.0690*
H7 0.08590 0.01970 0.12040 0.0610* 0.852 (7)
H9 −0.09610 0.23230 0.23740 0.0450*
H12 0.15630 −0.45930 0.26570 0.0470*
H13 0.14830 −0.27930 0.18020 0.0500*
H6AA 0.13470 0.06810 0.09570 0.0450* 0.148 (7)
H6AB −0.05690 0.17360 0.14590 0.0610* 0.148 (7)
H2A 0.09850 0.34570 −0.00580 0.0810* 0.148 (7)
H3A 0.20300 0.04760 0.39550 0.0720*
H3B 0.13940 0.30260 0.40220 0.0720*
H3C 0.27440 0.22170 0.44030 0.0720*
H4A −0.12420 −0.46860 0.43620 0.0750*
H4B −0.26310 −0.34730 0.45700 0.0750*
H4C −0.16650 −0.50610 0.49810 0.0750*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0654 (19) 0.053 (2) 0.0387 (12) 0.0041 (16) 0.0046 (11) 0.0104 (15)
O2 0.0630 (18) 0.0519 (12) 0.0320 (15) −0.0025 (11) 0.0044 (11) 0.0042 (11)
O3 0.0487 (8) 0.0467 (8) 0.0339 (7) 0.0155 (6) 0.0009 (6) 0.0038 (6)
O4 0.0586 (9) 0.0409 (8) 0.0337 (7) 0.0124 (6) 0.0032 (6) 0.0103 (6)
C5 0.046 (2) 0.045 (2) 0.0266 (16) −0.0126 (18) 0.0039 (12) −0.0014 (14)
C6 0.0447 (13) 0.0429 (13) 0.0302 (12) −0.0046 (10) 0.0036 (9) −0.0014 (9)
C7 0.0541 (12) 0.0586 (14) 0.0381 (12) −0.0193 (11) −0.0043 (9) 0.0034 (10)
C8 0.0428 (10) 0.0473 (11) 0.0304 (9) −0.0178 (9) −0.0024 (8) 0.0015 (8)
C9 0.0425 (10) 0.0327 (9) 0.0357 (10) −0.0048 (8) −0.0090 (8) 0.0055 (7)
C10 0.0367 (9) 0.0343 (9) 0.0286 (9) 0.0002 (7) −0.0027 (7) 0.0003 (7)
C11 0.0366 (9) 0.0357 (10) 0.0312 (9) −0.0006 (7) −0.0018 (7) 0.0046 (7)
C12 0.0372 (10) 0.0422 (11) 0.0389 (10) 0.0010 (8) 0.0017 (8) −0.0008 (8)
C13 0.0409 (10) 0.0502 (12) 0.0339 (10) −0.0076 (9) 0.0043 (8) −0.0041 (8)
C14 0.0463 (11) 0.0405 (11) 0.0516 (12) 0.0110 (9) 0.0011 (9) −0.0011 (9)
O1A 0.054 (10) 0.050 (15) 0.034 (7) 0.014 (10) 0.025 (7) 0.024 (10)
O2A 0.071 (10) 0.057 (7) 0.035 (7) 0.008 (7) 0.011 (6) 0.015 (6)
C5A 0.046 (2) 0.045 (2) 0.0266 (16) −0.0126 (18) 0.0039 (12) −0.0014 (14)
C6A 0.037 (7) 0.042 (8) 0.034 (8) 0.011 (5) 0.003 (5) 0.012 (6)
N1 0.0404 (8) 0.0450 (9) 0.0322 (8) 0.0081 (7) −0.0007 (7) 0.0108 (7)
C1 0.0365 (9) 0.0450 (11) 0.0331 (9) 0.0087 (8) 0.0010 (7) 0.0140 (8)
C2 0.0356 (9) 0.0446 (11) 0.0327 (9) 0.0072 (8) −0.0007 (7) 0.0122 (8)
C3 0.0478 (11) 0.0549 (13) 0.0420 (11) 0.0058 (9) 0.0107 (9) 0.0151 (9)
C4 0.0486 (12) 0.0520 (13) 0.0498 (12) −0.0011 (10) 0.0002 (10) 0.0051 (10)

Geometric parameters (Å, °)

O1—C5 1.265 (6) C11—C12 1.383 (3)
O1A—C5A 1.20 (4) C12—C13 1.384 (3)
O2—C5 1.283 (6) C6—H6 0.9500
O2A—C5A 1.39 (3) C6A—H6AA 0.9500
O3—C14 1.425 (3) C7—H7 0.9500
O3—C10 1.361 (2) C7—H6AB 0.9500
O4—C11 1.352 (2) C9—H9 0.9500
O2—H2 0.8400 C12—H12 0.9500
O2A—H2A 0.8400 C13—H13 0.9500
O4—H4 0.8200 C14—H14B 0.9800
N1—C1 1.340 (3) C14—H14C 0.9800
N1—C2 1.339 (2) C14—H14A 0.9800
C5—C6 1.462 (4) C1—C3 1.498 (3)
C5A—C6A 1.42 (3) C1—C2i 1.393 (3)
C6—C7 1.302 (3) C2—C4 1.496 (3)
C6A—C7 1.068 (12) C3—H3A 0.9800
C7—C8 1.454 (3) C3—H3B 0.9800
C8—C13 1.384 (3) C3—H3C 0.9800
C8—C9 1.407 (3) C4—H4A 0.9800
C9—C10 1.387 (3) C4—H4B 0.9800
C10—C11 1.403 (2) C4—H4C 0.9800
C10—O3—C14 117.19 (15) C8—C7—H7 116.00
C5—O2—H2 109.00 C8—C7—H6AB 96.00
C5A—O2A—H2A 109.00 C10—C9—H9 120.00
C11—O4—H4 110.00 C8—C9—H9 120.00
C1—N1—C2 119.49 (16) C13—C12—H12 120.00
O2—C5—C6 118.7 (4) C11—C12—H12 120.00
O1—C5—C6 118.3 (4) C8—C13—H13 119.00
O1—C5—O2 123.0 (4) C12—C13—H13 119.00
O1A—C5A—O2A 126 (2) H14A—C14—H14C 109.00
O2A—C5A—C6A 106 (2) H14B—C14—H14C 110.00
O1A—C5A—C6A 128 (2) H14A—C14—H14B 109.00
C5—C6—C7 123.3 (3) O3—C14—H14A 109.00
C5A—C6A—C7 147.1 (16) O3—C14—H14B 109.00
C6A—C7—C8 167.7 (7) O3—C14—H14C 109.00
C6—C7—C8 128.0 (2) N1—C1—C3 117.31 (18)
C9—C8—C13 118.77 (18) N1—C1—C2i 120.61 (17)
C7—C8—C13 117.51 (18) C2i—C1—C3 122.06 (19)
C7—C8—C9 123.72 (19) N1—C2—C4 117.03 (17)
C8—C9—C10 120.34 (17) N1—C2—C1i 119.90 (17)
O3—C10—C9 125.55 (16) C1i—C2—C4 123.07 (18)
O3—C10—C11 114.63 (15) C1—C3—H3A 110.00
C9—C10—C11 119.82 (16) C1—C3—H3B 109.00
O4—C11—C12 118.58 (16) C1—C3—H3C 109.00
C10—C11—C12 119.59 (17) H3A—C3—H3B 109.00
O4—C11—C10 121.81 (15) H3A—C3—H3C 109.00
C11—C12—C13 120.3 (2) H3B—C3—H3C 109.00
C8—C13—C12 121.10 (19) C2—C4—H4A 109.00
C7—C6—H6 118.00 C2—C4—H4B 109.00
C5—C6—H6 118.00 C2—C4—H4C 109.00
C5A—C6A—H6AA 107.00 H4A—C4—H4B 110.00
C7—C6A—H6AA 106.00 H4A—C4—H4C 109.00
C6—C7—H7 116.00 H4B—C4—H4C 109.00
C6A—C7—H6AB 96.00
C14—O3—C10—C9 6.9 (3) C7—C8—C13—C12 177.84 (19)
C14—O3—C10—C11 −172.83 (16) C8—C9—C10—C11 2.1 (3)
C1—N1—C2—C4 −179.50 (18) C8—C9—C10—O3 −177.59 (18)
C2—N1—C1—C2i 0.0 (3) O3—C10—C11—O4 −2.3 (3)
C1—N1—C2—C1i 0.0 (3) O3—C10—C11—C12 175.86 (17)
C2—N1—C1—C3 −178.63 (17) C9—C10—C11—O4 177.98 (17)
O2—C5—C6—C7 0.6 (6) C9—C10—C11—C12 −3.8 (3)
O1—C5—C6—C7 −179.2 (4) C10—C11—C12—C13 2.7 (3)
C5—C6—C7—C8 −179.8 (3) O4—C11—C12—C13 −179.10 (17)
C6—C7—C8—C9 0.3 (3) C11—C12—C13—C8 0.3 (3)
C6—C7—C8—C13 −179.6 (2) N1—C1—C2i—N1i 0.0 (3)
C7—C8—C9—C10 −179.05 (18) N1—C1—C2i—C4i −179.47 (18)
C9—C8—C13—C12 −2.1 (3) C3—C1—C2i—N1i 178.56 (18)
C13—C8—C9—C10 0.9 (3) C3—C1—C2i—C4i −0.9 (3)

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1ii 0.84 1.79 2.613 (5) 167
O4—H4···O3 0.82 2.28 2.685 (2) 111
O4—H4···N1 0.82 1.97 2.749 (2) 158
C3—H3B···O4iii 0.98 2.58 3.553 (3) 174
C14—H14B···O4iii 0.98 2.59 3.465 (2) 148

Symmetry codes: (ii) −x, −y+1, −z; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2237).

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Tan, Z. (2004). China Patent No. ZL00114239.9.
  5. Tan, Z., Jiang, T., Tang, C., Luo, J., Tan, H. & Chen, R. (2003). J. Chin. New Drugs, 12, 529-531.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811000961/su2237sup1.cif

e-67-0o424-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000961/su2237Isup2.hkl

e-67-0o424-Isup2.hkl (117.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES