Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):o403–o404. doi: 10.1107/S1600536811001589

5-Ethyl-4-phenyl-1H-pyrazol-3(2H)-one

Wan-Sin Loh a,, Hoong-Kun Fun a,*,§, R Venkat Ragavan b, V Vijayakumar b, M Venkatesh b
PMCID: PMC3051742  PMID: 21523076

Abstract

The asymmetric unit of the title compound, C11H12N2O, consists of two crystallographically independent mol­ecules (A and B) with similar geometries. Both mol­ecules exist in a keto form, the C=O bond length being 1.286 (2) Å in A and 1.283 (2) Å in B. The dihedral angles between the pyrazole ring and the attached phenyl ring are 43.28 (12) and 46.88 (11)°, respectively, for A and B. The ethyl unit in mol­ecule B is disordered over two positions with a site-occupancy ratio of 0.508 (5):0.492 (5). In the crystal, each of the independent mol­ecules forms a centrosymmetric dimer with an R 2 2(8) ring motif through a pair of N—H⋯O hydrogen bonds. These dimers are further connected into a three-dimensional network by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds. Inter­molecular C—H⋯π inter­actions are also present.

Related literature

For background to pyrazole derivatives and their microbial activity, see: Ragavan et al. (2009, 2010). For bond-length data, see: Allen et al. (1987). For related structures, see: Loh et al. (2010, 2010a ,b , 2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-0o403-scheme1.jpg

Experimental

Crystal data

  • C11H12N2O

  • M r = 188.23

  • Monoclinic, Inline graphic

  • a = 11.0898 (3) Å

  • b = 13.2171 (4) Å

  • c = 15.0265 (5) Å

  • β = 114.539 (2)°

  • V = 2003.58 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.60 × 0.16 × 0.13 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.953, T max = 0.989

  • 22130 measured reflections

  • 5845 independent reflections

  • 3654 reflections with I > 2σ(I)

  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.166

  • S = 1.05

  • 5845 reflections

  • 284 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811001589/is2655sup1.cif

e-67-0o403-sup1.cif (24KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001589/is2655Isup2.hkl

e-67-0o403-Isup2.hkl (286.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C4B–C9B and C4A–C9A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1NB⋯O1A 1.00 (2) 1.73 (2) 2.700 (2) 161 (2)
N2B—H2NB⋯O1Bi 1.02 (2) 1.72 (2) 2.738 (2) 176 (2)
N2A—H2NA⋯O1Aii 0.98 (3) 1.74 (3) 2.704 (2) 171 (2)
N1A—H1NA⋯O1Biii 0.98 (3) 1.74 (3) 2.691 (2) 162 (2)
C8A—H8AA⋯O1Aiv 0.93 2.47 3.370 (3) 163
C10A—H10CCg1iii 0.97 2.61 3.464 (2) 147
C10B—H10ECg2 0.97 2.71 3.524 (3) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship. VV is grateful to the DST–India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Antibacterial and antifungal activities of the azoles are most widely studied and some of them are in clinical practice as anti-microbial agents. However, the azole-resistant strains had led to the development of new anti-microbial compounds. In particular, pyrazole derivatives are extensively studied and used as anti-microbial agents. Pyrazole is an important class of heterocyclic compounds and many pyrazole derivatives are reported to have the broad spectrum of biological properties such as anti-inflammatory, antifungal, herbicidal, anti-tumour, cytotoxic, molecular modelling and antiviral activities. Pyrazole derivatives also act as anti-angiogenic agents, A3 adenosine receptor antagonists, neuropeptide YY5 receptor antagonists as well as kinase inhibitor for treatment of type 2 diabetes, hyperlipidemia, obesity and thrombopiotinmimetics. Recently urea derivatives of pyrazoles have been reported as potent inhibitors of p38 kinase. Since the high electronegativity of halogens (particularly chlorine and fluorine) in the aromatic part of the drug molecules play an important role in enhancing their biological activity, we are interested to have 4-fluoro or 4-chloro substitution in the aryls of 1,5-diaryl pyrazoles. As part of our on-going research aiming the synthesis of new anti-microbial compounds, we have reported the synthesis of novel pyrazole derivatives and their microbial activities (Ragavan et al., 2009, 2010).

The title compound (Fig. 1), consists of two crystallographically independent molecules, with similar geometries and exist in keto-form with the bond length of C═O being 1.286 (2) Å in molecule A and 1.283 (2) Å in molecule B. This indicates that the compound undergoes an enol-to-keto tautomerism during the crystallization process In molecule A, the pyrazole ring (N1A/N2A/C1A–C3A) is approximately planar [maximum deviation of 0.0262 (16) Å at N2A] and forms a dihedral angle of 43.28 (12)° with the attached phenyl ring (C4A–C9A). In molecule B, the pyrazole ring (N1B/N2B/C1B–C3B) is approximately planar with a maximum deviation of 0.0209 (15) Å at N1B and form a dihedral angle of 46.88 (11)° with the attached phenyl ring (C4B–C9B). The ethyl unit (C10B/C11B) in the molecule B is observed to be disordered over two positions with a site-occupancy ratio of 0.508 (5):0.492 (5). Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structures (Loh et al., 2010, 2011; Loh et al., 2010a,b).

In the crystal packing (Fig. 2), intermolecular N2A—H2NA···O1A and N2B—H2NB···O1B hydrogen bonds (Table 1) link the neighbouring molecules to form dimers, generating R22(8) ring motifs (Bernstein et al., 1995) and are further packed into three-dimensional network by intermolecular N1B—H1NB···O1A, N1A—H1NA···O1B and C8A—H8AA···O1A hydrogen bonds (Table 1). The crystal structure is further stabilized by C—H···π interactions (Table 1) involving Cg1 (C4B–C9B) and Cg2 (C4A–C9A).

Experimental

The compound has been synthesized using the method available in the literature (Ragavan et al., 2010) and recrystallized using the ethanol-chloroform 1:1 mixture (yield 81%, m. p. 361.3–362.1 K).

Refinement

N-bound H atoms were located from a difference Fourier map and were refined freely [N—H = 0.97 (2) to 1.02 (2) Å]. The remaining H atoms were positioned geometrically with the bond length of C—H = 0.93 to 0.97 Å and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. The ethyl unit of molecule B was disordered over two positions with a site-occupancy of 0.508 (5):0.492 (5). Bond-distance restraints were applied for C10B—C11B and C10B—C11C.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds indicate the minor component.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing the three-dimensional network. Only the major component is shown. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C11H12N2O F(000) = 800
Mr = 188.23 Dx = 1.248 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4628 reflections
a = 11.0898 (3) Å θ = 2.5–30.0°
b = 13.2171 (4) Å µ = 0.08 mm1
c = 15.0265 (5) Å T = 100 K
β = 114.539 (2)° Needle, colourless
V = 2003.58 (11) Å3 0.60 × 0.16 × 0.13 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5845 independent reflections
Radiation source: fine-focus sealed tube 3654 reflections with I > 2σ(I)
graphite Rint = 0.063
φ and ω scans θmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→15
Tmin = 0.953, Tmax = 0.989 k = −18→18
22130 measured reflections l = −20→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0659P)2 + 0.5295P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
5845 reflections Δρmax = 0.38 e Å3
284 parameters Δρmin = −0.30 e Å3
2 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0163 (19)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1A 0.59450 (13) 0.07629 (9) 0.94578 (11) 0.0314 (3)
N1A 0.29084 (17) 0.16378 (11) 0.92423 (13) 0.0288 (4)
N2A 0.38633 (15) 0.09048 (11) 0.94491 (12) 0.0271 (4)
C1A 0.32664 (18) 0.24453 (13) 0.88567 (14) 0.0246 (4)
C2A 0.48806 (18) 0.12736 (13) 0.92718 (14) 0.0244 (4)
C3A 0.44982 (17) 0.22608 (12) 0.88657 (14) 0.0239 (4)
C4A 0.53044 (18) 0.29233 (13) 0.85342 (16) 0.0298 (4)
C5A 0.6668 (2) 0.30005 (15) 0.90864 (18) 0.0396 (5)
H5AA 0.7066 0.2645 0.9671 0.047*
C6A 0.7438 (2) 0.36080 (18) 0.8767 (3) 0.0602 (8)
H6AA 0.8348 0.3652 0.9137 0.072*
C7A 0.6861 (3) 0.41400 (18) 0.7910 (3) 0.0685 (10)
H7AA 0.7379 0.4549 0.7704 0.082*
C8A 0.5513 (3) 0.40705 (19) 0.7351 (2) 0.0604 (8)
H8AA 0.5124 0.4430 0.6768 0.072*
C9A 0.4736 (2) 0.34624 (16) 0.76586 (18) 0.0401 (5)
H9AA 0.3829 0.3415 0.7278 0.048*
C10A 0.23852 (19) 0.33569 (14) 0.85216 (16) 0.0306 (4)
H10C 0.1769 0.3258 0.7845 0.037*
H10D 0.2927 0.3942 0.8546 0.037*
C11A 0.1600 (2) 0.35798 (17) 0.91215 (19) 0.0450 (6)
H11D 0.1092 0.4187 0.8884 0.068*
H11E 0.2199 0.3668 0.9795 0.068*
H11F 0.1013 0.3025 0.9064 0.068*
O1B 1.07863 (12) 0.06616 (9) 0.92558 (9) 0.0254 (3)
N1B 0.73764 (15) 0.06391 (11) 0.83821 (12) 0.0275 (4)
N2B 0.86312 (14) 0.04445 (11) 0.90754 (12) 0.0228 (3)
C1B 0.74826 (19) 0.11417 (14) 0.76342 (15) 0.0303 (4)
C2B 0.95360 (17) 0.07674 (12) 0.87492 (13) 0.0215 (4)
C3B 0.88097 (18) 0.12138 (13) 0.78120 (14) 0.0251 (4)
C4B 0.9388 (2) 0.16679 (13) 0.71837 (14) 0.0291 (4)
C5B 1.0386 (2) 0.11721 (15) 0.70194 (16) 0.0361 (5)
H5BA 1.0694 0.0549 0.7315 0.043*
C6B 1.0928 (3) 0.15955 (16) 0.64204 (18) 0.0505 (7)
H6BA 1.1588 0.1253 0.6312 0.061*
C7B 1.0483 (3) 0.25308 (17) 0.59830 (17) 0.0541 (7)
H7BA 1.0840 0.2814 0.5579 0.065*
C8B 0.9506 (3) 0.30381 (16) 0.61513 (16) 0.0459 (6)
H8BA 0.9209 0.3665 0.5862 0.055*
C9B 0.8973 (2) 0.26163 (15) 0.67475 (15) 0.0360 (5)
H9BA 0.8326 0.2969 0.6862 0.043*
C10B 0.6280 (2) 0.14952 (18) 0.67717 (18) 0.0499 (6)
H10A 0.5568 0.1581 0.6980 0.060* 0.508 (5)
H10B 0.6473 0.2157 0.6583 0.060* 0.508 (5)
H10E 0.6172 0.2209 0.6868 0.060* 0.492 (5)
H10F 0.6477 0.1442 0.6202 0.060* 0.492 (5)
C11B 0.5811 (4) 0.0874 (3) 0.5935 (3) 0.0427 (13) 0.508 (5)
H11A 0.5027 0.1168 0.5442 0.064* 0.508 (5)
H11B 0.5608 0.0215 0.6104 0.064* 0.508 (5)
H11C 0.6481 0.0816 0.5689 0.064* 0.508 (5)
C11C 0.5046 (3) 0.1031 (3) 0.6533 (4) 0.0395 (13) 0.492 (5)
H11G 0.4387 0.1358 0.5970 0.059* 0.492 (5)
H11H 0.4805 0.1090 0.7075 0.059* 0.492 (5)
H11I 0.5101 0.0329 0.6390 0.059* 0.492 (5)
H1NB 0.669 (2) 0.0719 (16) 0.8648 (17) 0.043 (6)*
H2NB 0.881 (2) 0.0033 (18) 0.9694 (18) 0.053 (7)*
H2NA 0.384 (2) 0.029 (2) 0.9802 (19) 0.060 (8)*
H1NA 0.204 (3) 0.1404 (18) 0.9184 (19) 0.052 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0284 (7) 0.0292 (7) 0.0398 (9) 0.0114 (5) 0.0174 (7) 0.0106 (6)
N1A 0.0297 (9) 0.0254 (8) 0.0368 (10) 0.0094 (6) 0.0193 (8) 0.0101 (6)
N2A 0.0286 (8) 0.0247 (8) 0.0325 (9) 0.0087 (6) 0.0172 (7) 0.0083 (6)
C1A 0.0265 (9) 0.0235 (8) 0.0255 (10) 0.0036 (7) 0.0125 (8) 0.0027 (7)
C2A 0.0246 (9) 0.0250 (8) 0.0234 (10) 0.0043 (7) 0.0097 (7) 0.0020 (7)
C3A 0.0234 (9) 0.0223 (8) 0.0256 (10) 0.0022 (6) 0.0097 (7) 0.0024 (7)
C4A 0.0229 (9) 0.0237 (9) 0.0442 (13) 0.0030 (7) 0.0153 (9) 0.0036 (8)
C5A 0.0263 (10) 0.0321 (10) 0.0574 (15) 0.0007 (8) 0.0144 (10) −0.0018 (10)
C6A 0.0270 (12) 0.0389 (13) 0.116 (3) −0.0031 (9) 0.0309 (15) −0.0020 (14)
C7A 0.0510 (16) 0.0381 (13) 0.141 (3) 0.0047 (11) 0.064 (2) 0.0232 (16)
C8A 0.0510 (15) 0.0508 (14) 0.100 (2) 0.0200 (11) 0.0524 (16) 0.0411 (14)
C9A 0.0293 (11) 0.0391 (11) 0.0591 (16) 0.0110 (8) 0.0255 (11) 0.0210 (10)
C10A 0.0316 (10) 0.0290 (9) 0.0372 (12) 0.0101 (7) 0.0203 (9) 0.0095 (8)
C11A 0.0548 (15) 0.0391 (12) 0.0558 (16) 0.0228 (10) 0.0375 (13) 0.0147 (10)
O1B 0.0221 (6) 0.0288 (6) 0.0264 (7) 0.0022 (5) 0.0111 (6) 0.0067 (5)
N1B 0.0201 (8) 0.0305 (8) 0.0294 (9) 0.0028 (6) 0.0076 (7) 0.0030 (6)
N2B 0.0189 (7) 0.0276 (7) 0.0221 (8) 0.0029 (5) 0.0087 (6) 0.0017 (6)
C1B 0.0321 (10) 0.0248 (9) 0.0266 (10) 0.0025 (7) 0.0049 (8) 0.0028 (7)
C2B 0.0249 (9) 0.0212 (8) 0.0217 (9) 0.0026 (6) 0.0129 (7) 0.0004 (6)
C3B 0.0307 (10) 0.0229 (8) 0.0213 (9) 0.0022 (7) 0.0104 (8) 0.0019 (7)
C4B 0.0410 (11) 0.0255 (9) 0.0186 (9) −0.0031 (7) 0.0102 (8) 0.0008 (7)
C5B 0.0589 (14) 0.0258 (9) 0.0337 (12) −0.0007 (9) 0.0294 (11) 0.0013 (8)
C6B 0.092 (2) 0.0353 (11) 0.0465 (15) −0.0071 (11) 0.0504 (15) −0.0031 (10)
C7B 0.104 (2) 0.0381 (12) 0.0357 (13) −0.0155 (13) 0.0448 (15) −0.0001 (10)
C8B 0.0787 (18) 0.0286 (10) 0.0245 (11) −0.0093 (10) 0.0156 (12) 0.0046 (8)
C9B 0.0488 (13) 0.0281 (10) 0.0239 (10) −0.0020 (8) 0.0081 (9) 0.0042 (7)
C10B 0.0427 (13) 0.0442 (13) 0.0400 (14) 0.0094 (10) −0.0054 (11) 0.0093 (10)
C11B 0.032 (2) 0.053 (3) 0.033 (3) 0.0001 (18) 0.0032 (19) 0.0136 (19)
C11C 0.021 (2) 0.047 (3) 0.047 (3) −0.0040 (17) 0.0109 (19) 0.014 (2)

Geometric parameters (Å, °)

O1A—C2A 1.286 (2) N1B—H1NB 1.00 (2)
N1A—C1A 1.350 (2) N2B—C2B 1.356 (2)
N1A—N2A 1.372 (2) N2B—H2NB 1.02 (3)
N1A—H1NA 0.98 (2) C1B—C3B 1.386 (3)
N2A—C2A 1.353 (2) C1B—C10B 1.497 (3)
N2A—H2NA 0.98 (3) C2B—C3B 1.427 (2)
C1A—C3A 1.382 (2) C3B—C4B 1.471 (3)
C1A—C10A 1.500 (2) C4B—C5B 1.394 (3)
C2A—C3A 1.428 (2) C4B—C9B 1.401 (3)
C3A—C4A 1.478 (2) C5B—C6B 1.391 (3)
C4A—C5A 1.394 (3) C5B—H5BA 0.9300
C4A—C9A 1.396 (3) C6B—C7B 1.391 (3)
C5A—C6A 1.395 (3) C6B—H6BA 0.9300
C5A—H5AA 0.9300 C7B—C8B 1.383 (4)
C6A—C7A 1.371 (4) C7B—H7BA 0.9300
C6A—H6AA 0.9300 C8B—C9B 1.379 (3)
C7A—C8A 1.381 (4) C8B—H8BA 0.9300
C7A—H7AA 0.9300 C9B—H9BA 0.9300
C8A—C9A 1.391 (3) C10B—C11C 1.403 (3)
C8A—H8AA 0.9300 C10B—C11B 1.408 (3)
C9A—H9AA 0.9300 C10B—H10A 0.9700
C10A—C11A 1.520 (3) C10B—H10B 0.9700
C10A—H10C 0.9700 C10B—H10E 0.9700
C10A—H10D 0.9700 C10B—H10F 0.9700
C11A—H11D 0.9600 C11B—H11A 0.9600
C11A—H11E 0.9600 C11B—H11B 0.9600
C11A—H11F 0.9600 C11B—H11C 0.9600
O1B—C2B 1.283 (2) C11C—H11G 0.9600
N1B—C1B 1.352 (2) C11C—H11H 0.9600
N1B—N2B 1.372 (2) C11C—H11I 0.9600
C1A—N1A—N2A 108.56 (15) N1B—N2B—H2NB 123.0 (14)
C1A—N1A—H1NA 131.6 (14) N1B—C1B—C3B 109.01 (16)
N2A—N1A—H1NA 115.8 (14) N1B—C1B—C10B 121.27 (19)
C2A—N2A—N1A 109.22 (15) C3B—C1B—C10B 129.69 (19)
C2A—N2A—H2NA 128.0 (15) O1B—C2B—N2B 122.08 (16)
N1A—N2A—H2NA 121.5 (15) O1B—C2B—C3B 131.19 (16)
N1A—C1A—C3A 108.78 (15) N2B—C2B—C3B 106.72 (16)
N1A—C1A—C10A 120.80 (16) C1B—C3B—C2B 106.31 (16)
C3A—C1A—C10A 130.40 (16) C1B—C3B—C4B 127.96 (17)
O1A—C2A—N2A 122.23 (16) C2B—C3B—C4B 125.72 (17)
O1A—C2A—C3A 130.95 (17) C5B—C4B—C9B 117.91 (18)
N2A—C2A—C3A 106.82 (15) C5B—C4B—C3B 120.77 (16)
C1A—C3A—C2A 106.39 (15) C9B—C4B—C3B 121.31 (18)
C1A—C3A—C4A 128.76 (15) C6B—C5B—C4B 120.9 (2)
C2A—C3A—C4A 124.86 (16) C6B—C5B—H5BA 119.5
C5A—C4A—C9A 118.53 (19) C4B—C5B—H5BA 119.5
C5A—C4A—C3A 120.08 (18) C5B—C6B—C7B 120.0 (2)
C9A—C4A—C3A 121.37 (17) C5B—C6B—H6BA 120.0
C4A—C5A—C6A 120.4 (2) C7B—C6B—H6BA 120.0
C4A—C5A—H5AA 119.8 C8B—C7B—C6B 119.7 (2)
C6A—C5A—H5AA 119.8 C8B—C7B—H7BA 120.1
C7A—C6A—C5A 120.3 (2) C6B—C7B—H7BA 120.1
C7A—C6A—H6AA 119.8 C9B—C8B—C7B 120.1 (2)
C5A—C6A—H6AA 119.8 C9B—C8B—H8BA 119.9
C6A—C7A—C8A 120.2 (2) C7B—C8B—H8BA 119.9
C6A—C7A—H7AA 119.9 C8B—C9B—C4B 121.3 (2)
C8A—C7A—H7AA 119.9 C8B—C9B—H9BA 119.3
C7A—C8A—C9A 120.0 (2) C4B—C9B—H9BA 119.3
C7A—C8A—H8AA 120.0 C11C—C10B—C1B 120.6 (3)
C9A—C8A—H8AA 120.0 C11B—C10B—C1B 117.2 (2)
C8A—C9A—C4A 120.6 (2) C11B—C10B—H10A 108.0
C8A—C9A—H9AA 119.7 C1B—C10B—H10A 108.0
C4A—C9A—H9AA 119.7 C11B—C10B—H10B 108.0
C1A—C10A—C11A 114.22 (16) C1B—C10B—H10B 108.0
C1A—C10A—H10C 108.7 H10A—C10B—H10B 107.2
C11A—C10A—H10C 108.7 C11C—C10B—H10E 107.2
C1A—C10A—H10D 108.7 C1B—C10B—H10E 107.2
C11A—C10A—H10D 108.7 C11C—C10B—H10F 107.2
H10C—C10A—H10D 107.6 C1B—C10B—H10F 107.2
C10A—C11A—H11D 109.5 H10E—C10B—H10F 106.8
C10A—C11A—H11E 109.5 C10B—C11B—H11A 109.5
H11D—C11A—H11E 109.5 C10B—C11B—H11B 109.5
C10A—C11A—H11F 109.5 C10B—C11B—H11C 109.5
H11D—C11A—H11F 109.5 C10B—C11C—H11G 109.5
H11E—C11A—H11F 109.5 C10B—C11C—H11H 109.5
C1B—N1B—N2B 108.18 (15) H11G—C11C—H11H 109.5
C1B—N1B—H1NB 128.5 (13) C10B—C11C—H11I 109.5
N2B—N1B—H1NB 114.6 (14) H11G—C11C—H11I 109.5
C2B—N2B—N1B 109.63 (15) H11H—C11C—H11I 109.5
C2B—N2B—H2NB 126.9 (14)
C1A—N1A—N2A—C2A 5.0 (2) N2B—N1B—C1B—C3B 4.0 (2)
N2A—N1A—C1A—C3A −3.5 (2) N2B—N1B—C1B—C10B −177.96 (18)
N2A—N1A—C1A—C10A 177.71 (17) N1B—N2B—C2B—O1B −179.06 (15)
N1A—N2A—C2A—O1A 175.93 (17) N1B—N2B—C2B—C3B 1.65 (18)
N1A—N2A—C2A—C3A −4.4 (2) N1B—C1B—C3B—C2B −2.9 (2)
N1A—C1A—C3A—C2A 0.8 (2) C10B—C1B—C3B—C2B 179.2 (2)
C10A—C1A—C3A—C2A 179.43 (19) N1B—C1B—C3B—C4B 177.89 (17)
N1A—C1A—C3A—C4A −179.05 (19) C10B—C1B—C3B—C4B 0.1 (3)
C10A—C1A—C3A—C4A −0.4 (3) O1B—C2B—C3B—C1B −178.43 (18)
O1A—C2A—C3A—C1A −178.1 (2) N2B—C2B—C3B—C1B 0.77 (19)
N2A—C2A—C3A—C1A 2.2 (2) O1B—C2B—C3B—C4B 0.8 (3)
O1A—C2A—C3A—C4A 1.7 (3) N2B—C2B—C3B—C4B 179.96 (16)
N2A—C2A—C3A—C4A −177.92 (18) C1B—C3B—C4B—C5B −134.8 (2)
C1A—C3A—C4A—C5A 138.1 (2) C2B—C3B—C4B—C5B 46.2 (3)
C2A—C3A—C4A—C5A −41.7 (3) C1B—C3B—C4B—C9B 46.4 (3)
C1A—C3A—C4A—C9A −43.5 (3) C2B—C3B—C4B—C9B −132.6 (2)
C2A—C3A—C4A—C9A 136.7 (2) C9B—C4B—C5B—C6B −1.6 (3)
C9A—C4A—C5A—C6A 0.2 (3) C3B—C4B—C5B—C6B 179.5 (2)
C3A—C4A—C5A—C6A 178.6 (2) C4B—C5B—C6B—C7B 0.6 (4)
C4A—C5A—C6A—C7A 0.4 (4) C5B—C6B—C7B—C8B 0.4 (4)
C5A—C6A—C7A—C8A −0.6 (4) C6B—C7B—C8B—C9B −0.2 (4)
C6A—C7A—C8A—C9A 0.2 (4) C7B—C8B—C9B—C4B −0.8 (3)
C7A—C8A—C9A—C4A 0.4 (4) C5B—C4B—C9B—C8B 1.8 (3)
C5A—C4A—C9A—C8A −0.6 (3) C3B—C4B—C9B—C8B −179.4 (2)
C3A—C4A—C9A—C8A −179.0 (2) N1B—C1B—C10B—C11C −22.8 (4)
N1A—C1A—C10A—C11A 33.3 (3) C3B—C1B—C10B—C11C 154.8 (3)
C3A—C1A—C10A—C11A −145.2 (2) N1B—C1B—C10B—C11B −96.9 (3)
C1B—N1B—N2B—C2B −3.53 (19) C3B—C1B—C10B—C11B 80.7 (3)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C4B–C9B and C4A–C9A rings, respectively.
D—H···A D—H H···A D···A D—H···A
N1B—H1NB···O1A 1.00 (2) 1.73 (2) 2.700 (2) 161 (2)
N2B—H2NB···O1Bi 1.02 (2) 1.72 (2) 2.738 (2) 176 (2)
N2A—H2NA···O1Aii 0.98 (3) 1.74 (3) 2.704 (2) 171 (2)
N1A—H1NA···O1Biii 0.98 (3) 1.74 (3) 2.691 (2) 162 (2)
C8A—H8AA···O1Aiv 0.93 2.47 3.370 (3) 163
C10A—H10C···Cg1iii 0.97 2.61 3.464 (2) 147
C10B—H10E···Cg2 0.97 2.71 3.524 (3) 142

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y, −z+2; (iii) x−1, y, z; (iv) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2655).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Loh, W.-S., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010). Acta Cryst. E66, o2925. [DOI] [PMC free article] [PubMed]
  6. Loh, W.-S., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2011). Acta Cryst. E67, o151–o152. [DOI] [PMC free article] [PubMed]
  7. Loh, W.-S., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Venkatesh, M. (2010a). Acta Cryst. E66, o2563–o2564. [DOI] [PMC free article] [PubMed]
  8. Loh, W.-S., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Venkatesh, M. (2010b). Acta Cryst. E66, o3050–o3051. [DOI] [PMC free article] [PubMed]
  9. Ragavan, R. V., Vijayakumar, V. & Sucheta Kumari, N. (2009). Eur. J. Med. Chem. 44, 3852–3857. [DOI] [PubMed]
  10. Ragavan, R. V., Vijayakumar, V. & Sucheta Kumari, N. (2010). Eur. J. Med. Chem. 45, 1173–1180. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811001589/is2655sup1.cif

e-67-0o403-sup1.cif (24KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001589/is2655Isup2.hkl

e-67-0o403-Isup2.hkl (286.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES