Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 8;67(Pt 2):o313–o314. doi: 10.1107/S1600536811000377

(2E)-3-[4-(Dimethyl­amino)­phen­yl]-1-(4-fluoro­phen­yl)prop-2-en-1-one

Jerry P Jasinski a,*, Ray J Butcher b, B P Siddaraju c, B Narayana d, H S Yathirajan c
PMCID: PMC3051752  PMID: 21523001

Abstract

The mean planes of the two benzene rings in the title compound, C17H16FNO, are twisted slightly, making a dihedral angle of 7.8 (1)°. The prop-2-en-1-one group is also twisted slightly with a C—C—C—O torsion angle of −11.6 (3)°. In the crystal, weak inter­molecular C—H⋯O inter­actions link pairs of mol­ecules, forming centrosymmetric dimers.

Related literature

Chalcones are precursors of all flavonoid-type natural products in biosynthesis, see: Marais et al. (2005). For their pharmacological activity, see: Di Carlo et al. (1999) and for their anti­malarial activity, see: Ram et al. (2000); Troeberg et al. (2000). For the synthesis and biological activity of some fluorinated chalcone derivatives, see: Nakamura et al. (2002). For a review of anti-infective and anti-inflammatory chalcones, see: Nowakowska (2007) and for recent advances in therapeutic chalcones, see: Ni et al. (2004). For related structures, see: Butcher et al. (2006, 2007a ,b ); Harrison et al. (2006); Jasinski et al. (2009); Jing (2009); Sarojini et al. (2007). For standard bond lengths, see: Allen et al. (1987). graphic file with name e-67-0o313-scheme1.jpg

Experimental

Crystal data

  • C17H16FNO

  • M r = 269.31

  • Monoclinic, Inline graphic

  • a = 12.8334 (3) Å

  • b = 12.3560 (2) Å

  • c = 9.3922 (2) Å

  • β = 105.965 (2)°

  • V = 1431.87 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.56 × 0.47 × 0.22 mm

Data collection

  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.675, T max = 1.000

  • 6644 measured reflections

  • 2929 independent reflections

  • 2098 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.197

  • S = 1.10

  • 2929 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811000377/xu5139sup1.cif

e-67-0o313-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000377/xu5139Isup2.hkl

e-67-0o313-Isup2.hkl (143.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O1i 0.96 2.56 3.525 (3) 180

Symmetry code: (i) Inline graphic.

Acknowledgments

BN thanks Mangalore University for the use of research facilities and the UGC for financial assistance. HSY thanks UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Chalcones are known as the precursors of all flavonoid type natural products in biosynthesis (Marais et al., 2005). Chalcones, one of the major classes of natural products with widespread distribution in fruits, vegetables, spices, tea and soy based foodstuff have been recently subjects of interest for their interesting pharmacological activities (Di Carlo et al., 1999). Many chalcones have been described for their high antimalarial activity, probably as a result of michael addition of nucleophilic species to the double bond of the enone (Troeberg et al., 2000 & Ram et al., 2000). Synthesis and biological activities of some fluorinated chalcone derivatives is published (Nakamura et al., 2002). A review of anti-infective and anti-inflammatory chalcones (Nowakowska, 2007) and recent advances in therapeutic chalcones have been reported (Ni et al., 2004). The crystal structures of few related fluoro chalcones viz., 3-(3,4-dimethoxyphenyl)-1-(4-fluorophenyl)prop-2-en-1-one (Butcher et al., 2006), (2E)-3-(4-fluorophenyl)-1-(3-hydroxyphenyl)prop-2-en-1-one (Butcher et al., 2007a), (2E)-3-(4-fluorophenyl)-1-(4-methylphenyl)prop-2-en-1-one (Butcher et al., 2007b), a second polymorph of (2E)-1-(4-fluorophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (Jasinski, et al., 2009), (E)-3-(4-fluorophenyl)-1-phenyl-2-propen-1-one (Jing, 2009), 1-(4-fluorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Harrison et al., 2006) and 3-(biphenyl-4-yl)-1-(4-fluorophenyl)prop-2-en-1-one (Sarojini et al., 2007) have been reported. In a continuation of our studies and in view of the importance of fluoro chalcones, we report the synthesis and crystal structure of a new chalcone, C17H16FNO, (I).

The mean planes of the two benzene rings in the title compound, C17H16FNO, are twisted slightly being separated by 7.8 (0)° (Fig. 2). The prop-2-en-1-one group is also twisted slightly with a C2—C1—C7—O1 torsion angle of -11.6 (3)°. Bond distances and angles are in normal ranges (Allen et al., 1987). A weak C—H···O intermolecular interaction (Table 1) contributes to crystal packing creating a centrosymmetric dimer (Fig. 3).

Experimental

4-Fluoroaetophenone (1.38 g, 0.01 mol) was mixed with 4-(dimethylamino)benzaldehyde (1.49 g, 0.01 mol) and dissolved in ethanol (40 ml) (Fig. 1). To this solution 10 ml of KOH (30%) was added at 273 K. The reaction mixture stirred for 4 h and poured on to crushed ice. The resulting crude solid was filtered, washed successively with dilute HCl solution and distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Crystals suitable for X-ray diffraction studies were grown by the slow evaporation of the solution of the compound in ethyl acetate (M.P.: 383–388 K). Composition: Found (Calculated) for C17H16FNO; C: 75.77 (75.82%); H: 5.96 (5.99%); N: 5.16 (5.20%).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.93 Å (aromatic), or 0.96 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.19–1.20 (aromatic) or 1.49 (CH3) times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Reaction scheme for C17H16FNO.

Fig. 2.

Fig. 2.

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 3.

Fig. 3.

Packing diagram of the title compound viewed down the b axis. Dashed lines indicate weak a C—H···O intermolecular hydrogen bond interaction creating a layered structure along [101].

Crystal data

C17H16FNO F(000) = 568
Mr = 269.31 Dx = 1.249 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3513 reflections
a = 12.8334 (3) Å θ = 2.4–38.6°
b = 12.3560 (2) Å µ = 0.09 mm1
c = 9.3922 (2) Å T = 295 K
β = 105.965 (2)° Irregular triangular plate, yellow
V = 1431.87 (5) Å3 0.56 × 0.47 × 0.22 mm
Z = 4

Data collection

Oxford Diffraction Gemini R diffractometer 2929 independent reflections
Radiation source: fine-focus sealed tube 2098 reflections with I > 2σ(I)
graphite Rint = 0.018
Detector resolution: 10.5081 pixels mm-1 θmax = 26.7°, θmin = 2.3°
φ and ω scans h = −16→15
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −15→15
Tmin = 0.675, Tmax = 1.000 l = −11→11
6644 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1067P)2 + 0.0852P] where P = (Fo2 + 2Fc2)/3
2929 reflections (Δ/σ)max < 0.001
184 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 1.15377 (18) 0.10045 (18) 1.0627 (2) 0.1881 (10)
O1 0.83748 (14) 0.47322 (14) 0.78907 (19) 0.1242 (6)
C1 0.92349 (14) 0.30455 (16) 0.8178 (2) 0.0850 (5)
C2 1.0044 (2) 0.3397 (2) 0.9375 (3) 0.1251 (9)
H2A 1.0064 0.4124 0.9635 0.150*
C3 1.0820 (3) 0.2720 (3) 1.0198 (4) 0.1402 (11)
H3A 1.1363 0.2978 1.0999 0.168*
C4 1.0777 (2) 0.1681 (3) 0.9820 (3) 0.1281 (9)
C5 0.9972 (3) 0.1257 (3) 0.8685 (4) 0.1464 (12)
H5A 0.9942 0.0519 0.8480 0.176*
C6 0.9209 (2) 0.1953 (2) 0.7859 (3) 0.1187 (8)
H6A 0.8665 0.1684 0.7068 0.142*
N1 0.36368 (14) 0.37392 (15) −0.0182 (2) 0.0984 (5)
C7 0.84180 (15) 0.38300 (17) 0.7354 (2) 0.0894 (5)
C8 0.76857 (15) 0.35318 (16) 0.5923 (2) 0.0853 (5)
H8A 0.7756 0.2857 0.5520 0.102*
C9 0.69177 (16) 0.42082 (15) 0.5183 (2) 0.0861 (5)
H9A 0.6893 0.4870 0.5645 0.103*
C10 0.61231 (15) 0.40735 (14) 0.3784 (2) 0.0810 (5)
C11 0.60600 (15) 0.31682 (14) 0.2863 (2) 0.0831 (5)
H11A 0.6573 0.2621 0.3149 0.100*
C12 0.52677 (16) 0.30671 (15) 0.1558 (2) 0.0856 (5)
H12A 0.5265 0.2460 0.0972 0.103*
C13 0.44563 (15) 0.38556 (15) 0.1076 (2) 0.0828 (5)
C14 0.45373 (18) 0.47770 (16) 0.1973 (2) 0.0968 (6)
H14A 0.4037 0.5334 0.1684 0.116*
C15 0.53447 (19) 0.48642 (15) 0.3267 (2) 0.0963 (6)
H15A 0.5373 0.5488 0.3831 0.116*
C16 0.3540 (2) 0.2790 (2) −0.1099 (3) 0.1289 (9)
H16A 0.4204 0.2681 −0.1364 0.193*
H16B 0.2955 0.2886 −0.1980 0.193*
H16C 0.3398 0.2171 −0.0563 0.193*
C17 0.2862 (2) 0.4610 (2) −0.0696 (3) 0.1149 (7)
H17A 0.2522 0.4790 0.0065 0.172*
H17B 0.2321 0.4381 −0.1569 0.172*
H17C 0.3233 0.5234 −0.0922 0.172*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.1983 (18) 0.1869 (19) 0.1399 (14) 0.0835 (16) −0.0196 (14) 0.0050 (13)
O1 0.1291 (12) 0.1024 (11) 0.1227 (12) 0.0113 (9) 0.0033 (10) −0.0346 (9)
C1 0.0812 (10) 0.0904 (12) 0.0836 (10) −0.0030 (9) 0.0229 (8) −0.0078 (9)
C2 0.1233 (17) 0.1070 (17) 0.1222 (18) 0.0007 (14) −0.0045 (15) −0.0236 (14)
C3 0.1254 (19) 0.138 (2) 0.125 (2) 0.0128 (18) −0.0198 (16) −0.0143 (18)
C4 0.1270 (18) 0.141 (2) 0.1022 (16) 0.0355 (17) 0.0072 (14) 0.0023 (16)
C5 0.176 (3) 0.1129 (19) 0.124 (2) 0.0376 (19) −0.002 (2) −0.0146 (16)
C6 0.1273 (17) 0.1016 (16) 0.1074 (15) 0.0120 (14) −0.0010 (14) −0.0146 (13)
N1 0.1038 (11) 0.0985 (12) 0.0866 (10) 0.0089 (9) 0.0158 (9) 0.0029 (8)
C7 0.0883 (11) 0.0872 (12) 0.0932 (11) −0.0069 (9) 0.0257 (9) −0.0135 (9)
C8 0.0905 (11) 0.0770 (10) 0.0880 (11) −0.0035 (8) 0.0238 (9) −0.0064 (8)
C9 0.0930 (11) 0.0749 (10) 0.0916 (11) −0.0034 (8) 0.0275 (9) −0.0068 (9)
C10 0.0902 (10) 0.0682 (9) 0.0866 (10) −0.0003 (8) 0.0277 (9) 0.0002 (8)
C11 0.0892 (10) 0.0692 (9) 0.0913 (11) 0.0045 (8) 0.0253 (9) 0.0009 (8)
C12 0.0975 (11) 0.0703 (10) 0.0900 (11) 0.0007 (8) 0.0275 (9) −0.0055 (8)
C13 0.0908 (10) 0.0794 (10) 0.0786 (10) 0.0002 (8) 0.0241 (8) 0.0067 (8)
C14 0.1093 (13) 0.0786 (11) 0.0981 (13) 0.0192 (10) 0.0211 (11) 0.0053 (10)
C15 0.1172 (14) 0.0709 (10) 0.0957 (12) 0.0115 (10) 0.0205 (11) −0.0066 (9)
C16 0.1193 (17) 0.138 (2) 0.1126 (17) 0.0095 (16) 0.0036 (14) −0.0324 (16)
C17 0.1095 (15) 0.1255 (19) 0.1013 (14) 0.0171 (14) 0.0150 (12) 0.0159 (13)

Geometric parameters (Å, °)

F1—C4 1.349 (3) C9—C10 1.434 (3)
O1—C7 1.231 (2) C9—H9A 0.9300
C1—C2 1.374 (3) C10—C15 1.386 (3)
C1—C6 1.381 (3) C10—C11 1.403 (2)
C1—C7 1.481 (3) C11—C12 1.366 (3)
C2—C3 1.366 (4) C11—H11A 0.9300
C2—H2A 0.9300 C12—C13 1.407 (3)
C3—C4 1.330 (4) C12—H12A 0.9300
C3—H3A 0.9300 C13—C14 1.403 (3)
C4—C5 1.368 (4) C14—C15 1.368 (3)
C5—C6 1.371 (4) C14—H14A 0.9300
C5—H5A 0.9300 C15—H15A 0.9300
C6—H6A 0.9300 C16—H16A 0.9600
N1—C13 1.356 (3) C16—H16B 0.9600
N1—C16 1.440 (3) C16—H16C 0.9600
N1—C17 1.454 (3) C17—H17A 0.9600
C7—C8 1.460 (3) C17—H17B 0.9600
C8—C9 1.333 (3) C17—H17C 0.9600
C8—H8A 0.9300
C2—C1—C6 117.0 (2) C15—C10—C11 115.62 (17)
C2—C1—C7 119.2 (2) C15—C10—C9 120.08 (17)
C6—C1—C7 123.72 (19) C11—C10—C9 124.30 (17)
C3—C2—C1 122.6 (3) C12—C11—C10 121.92 (17)
C3—C2—H2A 118.7 C12—C11—H11A 119.0
C1—C2—H2A 118.7 C10—C11—H11A 119.0
C4—C3—C2 118.0 (3) C11—C12—C13 121.86 (17)
C4—C3—H3A 121.0 C11—C12—H12A 119.1
C2—C3—H3A 121.0 C13—C12—H12A 119.1
C3—C4—F1 118.5 (3) N1—C13—C14 121.39 (17)
C3—C4—C5 123.0 (3) N1—C13—C12 122.34 (18)
F1—C4—C5 118.4 (3) C14—C13—C12 116.27 (17)
C4—C5—C6 118.0 (3) C15—C14—C13 120.71 (18)
C4—C5—H5A 121.0 C15—C14—H14A 119.6
C6—C5—H5A 121.0 C13—C14—H14A 119.6
C5—C6—C1 121.3 (2) C14—C15—C10 123.54 (18)
C5—C6—H6A 119.3 C14—C15—H15A 118.2
C1—C6—H6A 119.3 C10—C15—H15A 118.2
C13—N1—C16 121.72 (19) N1—C16—H16A 109.5
C13—N1—C17 120.40 (18) N1—C16—H16B 109.5
C16—N1—C17 117.76 (19) H16A—C16—H16B 109.5
O1—C7—C8 121.0 (2) N1—C16—H16C 109.5
O1—C7—C1 118.93 (18) H16A—C16—H16C 109.5
C8—C7—C1 120.03 (17) H16B—C16—H16C 109.5
C9—C8—C7 121.22 (18) N1—C17—H17A 109.5
C9—C8—H8A 119.4 N1—C17—H17B 109.5
C7—C8—H8A 119.4 H17A—C17—H17B 109.5
C8—C9—C10 129.98 (18) N1—C17—H17C 109.5
C8—C9—H9A 115.0 H17A—C17—H17C 109.5
C10—C9—H9A 115.0 H17B—C17—H17C 109.5
C6—C1—C2—C3 2.2 (4) C8—C9—C10—C15 175.4 (2)
C7—C1—C2—C3 179.4 (3) C8—C9—C10—C11 −4.1 (3)
C1—C2—C3—C4 −0.5 (5) C15—C10—C11—C12 −1.3 (3)
C2—C3—C4—F1 −179.8 (3) C9—C10—C11—C12 178.19 (17)
C2—C3—C4—C5 −2.5 (6) C10—C11—C12—C13 −1.2 (3)
C3—C4—C5—C6 3.4 (5) C16—N1—C13—C14 −179.2 (2)
F1—C4—C5—C6 −179.2 (3) C17—N1—C13—C14 4.7 (3)
C4—C5—C6—C1 −1.5 (5) C16—N1—C13—C12 0.7 (3)
C2—C1—C6—C5 −1.2 (4) C17—N1—C13—C12 −175.38 (19)
C7—C1—C6—C5 −178.2 (2) C11—C12—C13—N1 −176.80 (18)
C2—C1—C7—O1 −11.6 (3) C11—C12—C13—C14 3.1 (3)
C6—C1—C7—O1 165.4 (2) N1—C13—C14—C15 177.5 (2)
C2—C1—C7—C8 167.9 (2) C12—C13—C14—C15 −2.4 (3)
C6—C1—C7—C8 −15.1 (3) C13—C14—C15—C10 −0.1 (3)
O1—C7—C8—C9 −2.9 (3) C11—C10—C15—C14 2.0 (3)
C1—C7—C8—C9 177.56 (17) C9—C10—C15—C14 −177.53 (19)
C7—C8—C9—C10 −179.71 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17A···O1i 0.96 2.56 3.525 (3) 180

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5139).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Butcher, R. J., Jasinski, J. P., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2007a). Acta Cryst. E63, o3586. [DOI] [PMC free article] [PubMed]
  3. Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Veena, K. (2007b). Acta Cryst. E63, o3833.
  4. Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633–o1635.
  5. Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353. [DOI] [PubMed]
  6. Harrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o3251–o3253. [DOI] [PubMed]
  7. Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2009). Acta Cryst. E65, o1965–o1966. [DOI] [PMC free article] [PubMed]
  8. Jing, L.-H. (2009). Acta Cryst. E65, o2515. [DOI] [PMC free article] [PubMed]
  9. Marais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145–2176. [DOI] [PubMed]
  10. Nakamura, C., Kawasaki, N., Miyataka, H., Jayachandran, E., Kim, I. H., Kirk, K. L., Taguchi, T., Takeuchi, Y., Hori, H. & Satoh, T. (2002). Bioorg. Med. Chem. 10, 699–706. [DOI] [PubMed]
  11. Ni, L., Meng, C. Q. & Sikorski, J. A. (2004). Exper. Opin. Ther. Pat. 14, 1669–1691.
  12. Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137. [DOI] [PubMed]
  13. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  14. Ram, V. J., Saxena, A. S., Srivastava, S. & Chandra, S. (2000). Bioorg. Med. Chem. Lett. 10, 2159–2161. [DOI] [PubMed]
  15. Sarojini, B. K., Yathirajan, H. S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2945.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660–669. [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811000377/xu5139sup1.cif

e-67-0o313-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000377/xu5139Isup2.hkl

e-67-0o313-Isup2.hkl (143.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES