Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 26;67(Pt 2):o491. doi: 10.1107/S160053681100256X

2-Chloro-N-[(4-chloro­phen­yl)(phen­yl)meth­yl]-N-[2-(4-nitro-1H-imidazol-1-yl)eth­yl]ethanamine

Wen-Tai Zhang a, Cheng-He Zhou a,*, Qing-Gang Ji a
PMCID: PMC3051753  PMID: 21523147

Abstract

In the title compound, C20H20Cl2N4O2, the nitro­imidazole ring makes dihedral angles of 17.00 (1) and 60.45 (11)° with the phenyl and chloro­phenyl rings, respectively. The three-coordinate N atom connected to two methyl­ene and one methine C atoms shows pyramidal coordination.

Related literature

For the use of nitro­gen mustards containing the β-chloro­ethyl­amine unit as anti­tumor drugs, see: Zhuang et al. (2008). Nitro­imidazole compounds are also used extensively in the treatment of various cancers as clinical radiosensitizers, see: Cai et al. (2009). For the synthesis, see: Fang et al. (2010); Gan et al. (2010).graphic file with name e-67-0o491-scheme1.jpg

Experimental

Crystal data

  • C20H20Cl2N4O2

  • M r = 419.30

  • Monoclinic, Inline graphic

  • a = 8.8206 (16) Å

  • b = 25.005 (5) Å

  • c = 9.0450 (17) Å

  • β = 100.802 (3)°

  • V = 1959.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.32 × 0.24 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.903, T max = 0.938

  • 9838 measured reflections

  • 3449 independent reflections

  • 2464 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.139

  • S = 1.03

  • 3449 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100256X/ng5107sup1.cif

e-67-0o491-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100256X/ng5107Isup2.hkl

e-67-0o491-Isup2.hkl (169.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Southwest University (grant Nos. SWUB2006018 and XSGX0602), the Natural Science Foundation of Chongqing (grant No. 2009BB5296) and the Research Funds for the Central Universities (XDJK2009c092) for financial support.

supplementary crystallographic information

Comment

Nitrogen mustards as anticancer agents containing typical β-chloroethylamine moiety with easy synthesis and inexpensive expense are one of the most important antitumor drugs (Zhuang et al., 2008). Nitroimidazole compounds are also extensively used in the treatment of various cancers as clinical radiosensitizer (Cai et al., 2009). In view of this, it is of great interest for us to investigate the nitrogen mustard-based nitroimidazoles as new potential anticancer agents. Herein we would like to report the crystal structure of the title compound (I).

The title compound, C20H20Cl2N4O2, crystallized in non-chiral monoclinic crystal system of P2(1)/n space group, including a racemic chiral isomers. In the molecule, the nitroimidazole ring makes dihedral angles of 17.00 (1) and 60.45 (11)°, respectively, with the benzene and chlorophenyl ring.

Experimental

The intermediate 2-chloro-N-(2-chloroethyl)-N-((4-chlorophenyl(phenyl)methyl)ethanamine (0.85 g, 2.5 mmol), which was prepared according to the procedure of Fang et al.(2010) and Gan et al.(2010), reacted with 4-nitroimidazole (0.34 g, 3.0 mmol) in the presence of weak base in acetonitrile at 60 °C for 12 h to produce the title compound (I) 0.30 g as white solid via silica gel column chromatography (ethyl acetate/petroleum ether, 1/2, V/V). A crystal of (I) suitable for X-ray analysis was grown from a mixture solution of ethyl acetate and petroleum ether by slow evaporation at room temperature.

Refinement

Hydrogen atoms were placed in idealized positions and treated as riding, with C—H = 0.93Å (CH), 0.98Å (CH) or 0.98Å (CH2) and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

Ellipsoid plot.

Crystal data

C20H20Cl2N4O2 Z = 4
Mr = 419.30 F(000) = 872
Monoclinic, P21/n Dx = 1.421 Mg m3
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 8.8206 (16) Å θ = 2.4–21.3°
b = 25.005 (5) Å µ = 0.36 mm1
c = 9.0450 (17) Å T = 298 K
β = 100.802 (3)° Block, colourless
V = 1959.6 (6) Å3 0.32 × 0.24 × 0.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3449 independent reflections
Radiation source: fine-focus sealed tube 2464 reflections with I > 2σ(I)
graphite Rint = 0.037
phi and ω scans θmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→7
Tmin = 0.903, Tmax = 0.938 k = −29→29
9838 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.904P] where P = (Fo2 + 2Fc2)/3
3449 reflections (Δ/σ)max = 0.001
253 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3270 (3) 0.05952 (13) 0.0927 (3) 0.0487 (7)
C2 0.4173 (4) 0.01834 (13) 0.1569 (4) 0.0615 (9)
H2 0.3972 −0.0165 0.1231 0.074*
C3 0.5385 (4) 0.02915 (12) 0.2723 (3) 0.0538 (8)
H3 0.5994 0.0009 0.3161 0.065*
C4 0.5734 (3) 0.07989 (11) 0.3257 (3) 0.0402 (6)
C5 0.4771 (3) 0.12070 (12) 0.2588 (3) 0.0498 (7)
H5 0.4957 0.1556 0.2933 0.060*
C6 0.3544 (3) 0.11081 (12) 0.1423 (3) 0.0514 (8)
H6 0.2917 0.1386 0.0985 0.062*
C7 0.7143 (3) 0.08861 (11) 0.4496 (3) 0.0401 (6)
H7 0.7628 0.0533 0.4654 0.048*
C8 0.6827 (3) 0.10452 (10) 0.6032 (3) 0.0400 (6)
C9 0.8038 (3) 0.10174 (11) 0.7245 (3) 0.0456 (7)
H9 0.8999 0.0902 0.7091 0.055*
C10 0.7859 (4) 0.11550 (12) 0.8666 (3) 0.0536 (8)
H10 0.8695 0.1137 0.9463 0.064*
C11 0.6439 (4) 0.13203 (13) 0.8913 (4) 0.0592 (8)
H11 0.6313 0.1417 0.9875 0.071*
C12 0.5226 (4) 0.13412 (14) 0.7746 (4) 0.0657 (9)
H12 0.4263 0.1448 0.7912 0.079*
C13 0.5415 (3) 0.12044 (12) 0.6309 (3) 0.0538 (8)
H13 0.4573 0.1220 0.5518 0.065*
C14 0.9049 (3) 0.10277 (13) 0.2887 (3) 0.0547 (8)
H14A 0.9671 0.1308 0.2559 0.066*
H14B 0.8231 0.0941 0.2046 0.066*
C15 1.0037 (4) 0.05433 (13) 0.3272 (4) 0.0591 (8)
H15A 1.0457 0.0436 0.2400 0.071*
H15B 0.9407 0.0252 0.3526 0.071*
C16 0.7954 (3) 0.18032 (11) 0.3913 (3) 0.0498 (7)
H16A 0.7132 0.1884 0.4456 0.060*
H16B 0.7574 0.1876 0.2855 0.060*
C17 0.9333 (4) 0.21643 (13) 0.4485 (3) 0.0557 (8)
H17A 1.0205 0.2049 0.4051 0.067*
H17B 0.9081 0.2528 0.4158 0.067*
C18 1.1030 (3) 0.19238 (12) 0.6938 (4) 0.0523 (8)
H18 1.1775 0.1748 0.6516 0.063*
C19 0.9802 (3) 0.22472 (11) 0.8478 (3) 0.0479 (7)
C20 0.8953 (3) 0.23602 (11) 0.7104 (4) 0.0521 (8)
H20 0.8017 0.2542 0.6891 0.063*
Cl1 0.17478 (11) 0.04618 (4) −0.05458 (11) 0.0835 (3)
Cl2 1.15787 (10) 0.06636 (4) 0.48090 (12) 0.0777 (3)
N1 0.8356 (2) 0.12352 (9) 0.4102 (2) 0.0412 (5)
N2 0.9760 (3) 0.21524 (9) 0.6115 (3) 0.0458 (6)
N3 1.1106 (3) 0.19743 (10) 0.8388 (3) 0.0538 (6)
N4 0.9403 (4) 0.23746 (13) 0.9901 (4) 0.0692 (8)
O1 1.0250 (3) 0.22177 (12) 1.1050 (3) 0.0897 (9)
O2 0.8228 (4) 0.26290 (15) 0.9864 (4) 0.1142 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0397 (16) 0.0603 (19) 0.0430 (17) −0.0055 (14) −0.0002 (13) −0.0095 (14)
C2 0.059 (2) 0.0473 (18) 0.073 (2) −0.0065 (16) −0.0015 (18) −0.0138 (16)
C3 0.0534 (18) 0.0446 (17) 0.060 (2) 0.0017 (14) 0.0013 (16) −0.0014 (14)
C4 0.0360 (14) 0.0425 (15) 0.0416 (16) 0.0020 (12) 0.0059 (12) 0.0013 (12)
C5 0.0451 (16) 0.0416 (16) 0.0565 (19) 0.0023 (13) −0.0061 (14) −0.0055 (14)
C6 0.0427 (17) 0.0503 (18) 0.0561 (19) 0.0063 (14) −0.0040 (14) 0.0038 (14)
C7 0.0361 (14) 0.0399 (15) 0.0417 (16) 0.0039 (12) 0.0005 (12) 0.0038 (12)
C8 0.0383 (15) 0.0369 (14) 0.0433 (16) −0.0022 (12) 0.0041 (12) 0.0054 (12)
C9 0.0347 (15) 0.0561 (18) 0.0450 (17) 0.0012 (13) 0.0049 (13) 0.0102 (14)
C10 0.0498 (18) 0.068 (2) 0.0392 (17) −0.0077 (16) −0.0004 (14) 0.0072 (15)
C11 0.063 (2) 0.068 (2) 0.0475 (18) −0.0007 (17) 0.0118 (16) −0.0073 (16)
C12 0.0505 (19) 0.087 (3) 0.059 (2) 0.0159 (18) 0.0107 (17) −0.0067 (18)
C13 0.0397 (16) 0.069 (2) 0.0493 (18) 0.0076 (15) −0.0010 (14) −0.0013 (15)
C14 0.0442 (17) 0.076 (2) 0.0419 (17) −0.0036 (16) 0.0032 (14) 0.0063 (15)
C15 0.0513 (19) 0.072 (2) 0.057 (2) −0.0036 (17) 0.0181 (16) −0.0093 (17)
C16 0.0454 (17) 0.0521 (18) 0.0463 (17) −0.0048 (14) −0.0055 (14) 0.0111 (14)
C17 0.0549 (19) 0.0574 (19) 0.0500 (18) −0.0139 (15) −0.0022 (15) 0.0171 (15)
C18 0.0396 (16) 0.0621 (19) 0.054 (2) 0.0032 (15) 0.0060 (14) 0.0025 (15)
C19 0.0413 (16) 0.0467 (17) 0.0552 (19) −0.0076 (14) 0.0074 (14) −0.0049 (14)
C20 0.0404 (17) 0.0441 (17) 0.067 (2) 0.0010 (14) −0.0030 (16) −0.0054 (15)
Cl1 0.0626 (6) 0.0995 (7) 0.0751 (6) −0.0043 (5) −0.0216 (5) −0.0236 (5)
Cl2 0.0537 (5) 0.0773 (6) 0.0937 (7) 0.0113 (4) −0.0080 (5) 0.0054 (5)
N1 0.0341 (12) 0.0473 (13) 0.0411 (13) 0.0014 (10) 0.0038 (10) 0.0070 (10)
N2 0.0381 (13) 0.0465 (13) 0.0494 (15) −0.0064 (11) −0.0001 (11) 0.0047 (11)
N3 0.0452 (15) 0.0627 (16) 0.0507 (16) −0.0013 (13) 0.0017 (12) 0.0051 (13)
N4 0.0560 (19) 0.080 (2) 0.072 (2) −0.0215 (16) 0.0145 (17) −0.0256 (17)
O1 0.094 (2) 0.117 (2) 0.0570 (16) −0.0273 (18) 0.0125 (16) −0.0085 (15)
O2 0.078 (2) 0.151 (3) 0.117 (3) 0.012 (2) 0.0262 (18) −0.065 (2)

Geometric parameters (Å, °)

C1—C2 1.364 (4) C13—H13 0.9300
C1—C6 1.365 (4) C14—N1 1.450 (4)
C1—Cl1 1.737 (3) C14—C15 1.495 (4)
C2—C3 1.374 (4) C14—H14A 0.9700
C2—H2 0.9300 C14—H14B 0.9700
C3—C4 1.372 (4) C15—Cl2 1.779 (3)
C3—H3 0.9300 C15—H15A 0.9700
C4—C5 1.392 (4) C15—H15B 0.9700
C4—C7 1.524 (4) C16—N1 1.466 (3)
C5—C6 1.384 (4) C16—C17 1.525 (4)
C5—H5 0.9300 C16—H16A 0.9700
C6—H6 0.9300 C16—H16B 0.9700
C7—N1 1.475 (3) C17—N2 1.452 (4)
C7—C8 1.520 (4) C17—H17A 0.9700
C7—H7 0.9800 C17—H17B 0.9700
C8—C13 1.375 (4) C18—N3 1.307 (4)
C8—C9 1.382 (4) C18—N2 1.350 (4)
C9—C10 1.368 (4) C18—H18 0.9300
C9—H9 0.9300 C19—N3 1.353 (4)
C10—C11 1.376 (4) C19—C20 1.355 (4)
C10—H10 0.9300 C19—N4 1.432 (4)
C11—C12 1.356 (4) C20—N2 1.348 (4)
C11—H11 0.9300 C20—H20 0.9300
C12—C13 1.384 (4) N4—O2 1.211 (4)
C12—H12 0.9300 N4—O1 1.225 (4)
C2—C1—C6 121.1 (3) N1—C14—H14A 108.5
C2—C1—Cl1 119.2 (2) C15—C14—H14A 108.5
C6—C1—Cl1 119.8 (2) N1—C14—H14B 108.5
C1—C2—C3 119.0 (3) C15—C14—H14B 108.5
C1—C2—H2 120.5 H14A—C14—H14B 107.5
C3—C2—H2 120.5 C14—C15—Cl2 111.8 (2)
C4—C3—C2 122.8 (3) C14—C15—H15A 109.2
C4—C3—H3 118.6 Cl2—C15—H15A 109.2
C2—C3—H3 118.6 C14—C15—H15B 109.2
C3—C4—C5 116.5 (3) Cl2—C15—H15B 109.2
C3—C4—C7 119.3 (2) H15A—C15—H15B 107.9
C5—C4—C7 124.2 (2) N1—C16—C17 112.0 (2)
C6—C5—C4 121.8 (3) N1—C16—H16A 109.2
C6—C5—H5 119.1 C17—C16—H16A 109.2
C4—C5—H5 119.1 N1—C16—H16B 109.2
C1—C6—C5 118.9 (3) C17—C16—H16B 109.2
C1—C6—H6 120.6 H16A—C16—H16B 107.9
C5—C6—H6 120.6 N2—C17—C16 111.8 (2)
N1—C7—C8 109.3 (2) N2—C17—H17A 109.3
N1—C7—C4 115.8 (2) C16—C17—H17A 109.3
C8—C7—C4 116.5 (2) N2—C17—H17B 109.3
N1—C7—H7 104.6 C16—C17—H17B 109.3
C8—C7—H7 104.6 H17A—C17—H17B 107.9
C4—C7—H7 104.6 N3—C18—N2 113.2 (3)
C13—C8—C9 117.5 (3) N3—C18—H18 123.4
C13—C8—C7 124.7 (3) N2—C18—H18 123.4
C9—C8—C7 117.8 (2) N3—C19—C20 112.3 (3)
C10—C9—C8 121.7 (3) N3—C19—N4 121.4 (3)
C10—C9—H9 119.2 C20—C19—N4 126.2 (3)
C8—C9—H9 119.2 N2—C20—C19 105.0 (3)
C9—C10—C11 119.8 (3) N2—C20—H20 127.5
C9—C10—H10 120.1 C19—C20—H20 127.5
C11—C10—H10 120.1 C14—N1—C16 112.7 (2)
C12—C11—C10 119.7 (3) C14—N1—C7 113.5 (2)
C12—C11—H11 120.2 C16—N1—C7 115.5 (2)
C10—C11—H11 120.2 C20—N2—C18 106.5 (2)
C11—C12—C13 120.4 (3) C20—N2—C17 126.7 (3)
C11—C12—H12 119.8 C18—N2—C17 126.8 (3)
C13—C12—H12 119.8 C18—N3—C19 103.0 (3)
C8—C13—C12 121.0 (3) O2—N4—O1 125.0 (3)
C8—C13—H13 119.5 O2—N4—C19 116.4 (3)
C12—C13—H13 119.5 O1—N4—C19 118.5 (3)
N1—C14—C15 115.1 (2)
C6—C1—C2—C3 −0.6 (5) N1—C14—C15—Cl2 −58.3 (3)
Cl1—C1—C2—C3 179.4 (2) N1—C16—C17—N2 −70.4 (3)
C1—C2—C3—C4 −0.4 (5) N3—C19—C20—N2 −0.3 (3)
C2—C3—C4—C5 1.3 (4) N4—C19—C20—N2 −178.3 (3)
C2—C3—C4—C7 −177.3 (3) C15—C14—N1—C16 156.5 (3)
C3—C4—C5—C6 −1.3 (4) C15—C14—N1—C7 −69.7 (3)
C7—C4—C5—C6 177.2 (3) C17—C16—N1—C14 −83.4 (3)
C2—C1—C6—C5 0.6 (5) C17—C16—N1—C7 143.8 (2)
Cl1—C1—C6—C5 −179.4 (2) C8—C7—N1—C14 163.5 (2)
C4—C5—C6—C1 0.4 (5) C4—C7—N1—C14 −62.6 (3)
C3—C4—C7—N1 118.5 (3) C8—C7—N1—C16 −64.1 (3)
C5—C4—C7—N1 −60.0 (3) C4—C7—N1—C16 69.8 (3)
C3—C4—C7—C8 −110.9 (3) C19—C20—N2—C18 0.6 (3)
C5—C4—C7—C8 70.6 (3) C19—C20—N2—C17 179.6 (3)
N1—C7—C8—C13 121.7 (3) N3—C18—N2—C20 −0.7 (3)
C4—C7—C8—C13 −11.9 (4) N3—C18—N2—C17 −179.7 (3)
N1—C7—C8—C9 −59.8 (3) C16—C17—N2—C20 −70.0 (4)
C4—C7—C8—C9 166.6 (2) C16—C17—N2—C18 108.8 (3)
C13—C8—C9—C10 −1.6 (4) N2—C18—N3—C19 0.4 (3)
C7—C8—C9—C10 179.7 (3) C20—C19—N3—C18 −0.1 (3)
C8—C9—C10—C11 0.7 (4) N4—C19—N3—C18 178.0 (3)
C9—C10—C11—C12 0.5 (5) N3—C19—N4—O2 178.6 (3)
C10—C11—C12—C13 −0.9 (5) C20—C19—N4—O2 −3.6 (5)
C9—C8—C13—C12 1.2 (4) N3—C19—N4—O1 −2.0 (4)
C7—C8—C13—C12 179.8 (3) C20—C19—N4—O1 175.8 (3)
C11—C12—C13—C8 0.0 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5107).

References

  1. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cai, J. L., Li, S., Zhou, C. H., Gan, L. L. & Wu, J. (2009). Chin J New Drugs, 18, 598–652.
  3. Fang, B., Zhou, C. H. & Rao, X. C. (2010). Eur J Med Chem 45, 4388–4398. [DOI] [PubMed]
  4. Gan, L. L., Fang, B. & Zhou, C. H. (2010). Bull Kor. Chem Soc 31, 3684–3693.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Zhuang, Y. Y., Zhou, C. H., Wang, Y. F. & Li, D. H. (2008). Chin Pharm J 43, 1281–1287.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100256X/ng5107sup1.cif

e-67-0o491-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100256X/ng5107Isup2.hkl

e-67-0o491-Isup2.hkl (169.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES