Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):m203–m204. doi: 10.1107/S1600536811000870

Bis(trimethyl­ammonium) tetra­chlorido­diphenyl­stannate(IV)

Tidiane Diop a, Libasse Diop a,*, K C Kieran Molloy b, Gabrielle Kocioc-Köhn b
PMCID: PMC3051760  PMID: 21522868

Abstract

The title compound, [(CH3)3NH]2[Sn(C6H5)2Cl4], consists of [(CH3)3NH]+ cations and [SnPh2Cl4]2− anions in which the Sn atom, located on a centre of inversion, is bonded to four Cl atoms and two phenyl rings, giving an octa­hedral geometry with the phenyl rings in trans positions. In the crystal, the cations and the anions are connected by N—H⋯Cl hydrogen bonds and C—H⋯Cl inter­actions.

Related literature

For background to organotin(IV) chemistry, see: Evans & Karpel (1985); Kapoor et al. (2005); Zhang et al. (2006). For compounds containing the [SnPh2Cl4]2− ion in the cis or trans configuration, see: Ouyang et al. (1998); Hazell et al. (1998); Fernandez et al. (2002); Venkatraman et al. (2004); Garcia-Seijo et al. (2001); Casas et al. (1996); Teoh et al. (1992). For related crystal structures, see: Casas et al. (1996); Ouyang et al. (1998).graphic file with name e-67-0m203-scheme1.jpg

Experimental

Crystal data

  • (C3H10N)2[Sn(C6H5)2Cl4]

  • M r = 534.93

  • Monoclinic, Inline graphic

  • a = 9.0072 (2) Å

  • b = 8.4125 (2) Å

  • c = 14.9473 (4) Å

  • β = 96.046 (1)°

  • V = 1126.30 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 150 K

  • 0.25 × 0.25 × 0.20 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.689, T max = 0.739

  • 12905 measured reflections

  • 2571 independent reflections

  • 2219 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.072

  • S = 1.08

  • 2571 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.36 e Å−3

  • Δρmin = −1.41 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811000870/su2238sup1.cif

e-67-0m203-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000870/su2238Isup2.hkl

e-67-0m203-Isup2.hkl (123.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.85 (3) 2.42 (3) 3.152 (2) 144 (3)
C5—H5⋯Cl1i 0.95 2.79 3.678 (3) 156

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Our interest for organotin(IV) compounds is related to the various applications found for this family of compounds (Evans & Karpel, 1985; Kapoor et al., 2005; Zhang et al., 2006). Many compounds containing the [SnPh2Cl4]2-ion in the cis or trans conformation have been reported (Ouyang et al., 1998; Hazell et al., 1998; Fernandez et al., 2002; Venkatraman et al., 2004; Garcia-Seijo et al., 2001; Teoh et al., 1992). In our search for new organotin(IV) compounds we have initiated here the study of the interactions between (CH3)3N.HCl and SnPh2Cl2, which has yielded the title compound.

In the [Ph2SnCl4]2-anion, the tin atom is located on a centre of inversion and is bonded to four Cl atoms and two phenyl groups giving an octahedral geometry with the phenyl groups in trans- positions (Fig. 1). Consequently, the angle between the two trans groups is exactly 180 ° while the phenyl rings are almost perpendicular to the equitorial SnCl~4~ plane [C1—Sn1—Cl1 = 89.39 (6)°, C1—Sn1—Cl2 = 90.86 (7)°]. The two Sn—C (phenyl) bond distances are 2.149 (3) Å. The Sn—Cl bond distances [2.5722 (6) and 2.5796 (6) Å] are similar to those reported for [Hthiamine][SnPh2Cl4]. H2O (Casas et al., 1996), i.e. 2.573 (2) and 2.571 (2) Å. However, in 8-methoxyquinoliniumSnPh2Cl4 (Ouyang et al., 1998) these two bond lengths are slightly different [2.5727 (8) and 2.6099 (8) Å].

In the crystal the anion and the cations are linked by N—H···Cl hydrogen bonds (Fig. 1) and C—H···Cl intermolecular interactions (Table 1).

Experimental

The title compound was obtained as a white crystalline solid by reacting trimethylammonium chloride with diphenyltin dichloride in chloroform (2/1 ratio; M.p: 443 K). After slow evaporation of the solvent colourless crystals, suitable for X-ray diffraction analysis, were obtained.

Refinement

The NH H-atom was located in a difference Fourier map and was freely refined. The C-bound H-atoms were included in calculated positions and treated as riding: C—H = 0.95 and 0.98 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for CH H-atoms, and k = 1.5 for CH3 H-atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [the C-bound H-atoms have been omitted for clarity; symmetry code: (') = -x + 1, -y + 1, -z + 1].

Crystal data

(C3H10N)2[Sn(C6H5)2Cl4] F(000) = 540
Mr = 534.93 Dx = 1.577 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7261 reflections
a = 9.0072 (2) Å θ = 2.9–27.5°
b = 8.4125 (2) Å µ = 1.61 mm1
c = 14.9473 (4) Å T = 150 K
β = 96.046 (1)° Block, colourless
V = 1126.30 (5) Å3 0.25 × 0.25 × 0.20 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer 2571 independent reflections
Radiation source: fine-focus sealed tube 2219 reflections with I > 2σ(I)
graphite Rint = 0.048
142 2.0 degree images with \v scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (SORTAV; Blessing, 1995) h = −11→11
Tmin = 0.689, Tmax = 0.739 k = −10→10
12905 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.7419P] where P = (Fo2 + 2Fc2)/3
2571 reflections (Δ/σ)max < 0.001
122 parameters Δρmax = 2.36 e Å3
0 restraints Δρmin = −1.41 e Å3

Special details

Experimental. multi-scan from symmetry-related measurements Sortav (Blessing 1995)
Geometry. Bond distances, angles etc. have been calculated using therounded fractional coordinates. All su's are estimatedfrom the variances of the (full) variance-covariance matrix.The cell e.s.d.'s are taken into account in the estimation ofdistances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.50000 0.50000 0.50000 0.0152 (1)
Cl1 0.47692 (7) 0.31690 (7) 0.36079 (4) 0.0227 (2)
Cl2 0.25333 (7) 0.63136 (8) 0.43640 (4) 0.0256 (2)
C1 0.6252 (3) 0.6661 (3) 0.42855 (15) 0.0158 (7)
C2 0.7359 (3) 0.6103 (3) 0.37812 (16) 0.0192 (7)
C3 0.8137 (3) 0.7152 (3) 0.32797 (17) 0.0233 (8)
C4 0.7807 (3) 0.8763 (3) 0.32840 (17) 0.0251 (8)
C5 0.6730 (3) 0.9329 (3) 0.37967 (18) 0.0245 (8)
C6 0.5941 (3) 0.8278 (3) 0.42938 (16) 0.0202 (7)
N1 0.1432 (2) 0.2116 (3) 0.37059 (14) 0.0237 (7)
C7 0.1802 (4) 0.0396 (4) 0.3674 (3) 0.0423 (10)
C8 0.0931 (4) 0.2743 (4) 0.2800 (2) 0.0424 (10)
C9 0.0323 (3) 0.2447 (4) 0.4350 (2) 0.0328 (9)
H2 0.75850 0.50000 0.37790 0.0230*
H3 0.88900 0.67660 0.29360 0.0280*
H4 0.83220 0.94790 0.29340 0.0300*
H5 0.65260 1.04370 0.38110 0.0290*
H6 0.51900 0.86680 0.46380 0.0240*
H1 0.224 (3) 0.258 (3) 0.391 (2) 0.022 (7)*
H7A 0.09310 −0.01930 0.34000 0.0630*
H7B 0.20770 0.00040 0.42870 0.0630*
H7C 0.26400 0.02430 0.33160 0.0630*
H8A 0.16890 0.25150 0.23930 0.0640*
H8B 0.07840 0.38950 0.28350 0.0640*
H8C −0.00120 0.22340 0.25710 0.0640*
H9A 0.01660 0.35970 0.43870 0.0490*
H9B 0.06950 0.20380 0.49450 0.0490*
H9C −0.06240 0.19260 0.41420 0.0490*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.0147 (1) 0.0171 (1) 0.0144 (1) −0.0006 (1) 0.0041 (1) 0.0010 (1)
Cl1 0.0237 (3) 0.0258 (3) 0.0196 (3) −0.0035 (2) 0.0072 (2) −0.0058 (2)
Cl2 0.0181 (3) 0.0304 (3) 0.0286 (3) 0.0049 (2) 0.0043 (2) 0.0089 (3)
C1 0.0158 (11) 0.0185 (12) 0.0132 (11) −0.0032 (9) 0.0025 (8) 0.0009 (8)
C2 0.0196 (12) 0.0212 (12) 0.0169 (12) −0.0013 (9) 0.0030 (9) 0.0000 (9)
C3 0.0199 (12) 0.0335 (15) 0.0172 (12) −0.0030 (10) 0.0056 (9) 0.0014 (10)
C4 0.0240 (13) 0.0290 (14) 0.0215 (13) −0.0092 (11) −0.0009 (10) 0.0070 (10)
C5 0.0287 (14) 0.0166 (12) 0.0275 (13) −0.0034 (10) −0.0007 (11) 0.0033 (10)
C6 0.0211 (12) 0.0191 (12) 0.0204 (12) 0.0005 (9) 0.0028 (9) −0.0018 (9)
N1 0.0182 (11) 0.0313 (12) 0.0210 (11) −0.0051 (9) −0.0002 (9) −0.0037 (9)
C7 0.0308 (16) 0.0350 (16) 0.060 (2) −0.0007 (13) −0.0005 (15) −0.0132 (15)
C8 0.0371 (17) 0.068 (2) 0.0211 (15) −0.0077 (15) −0.0020 (13) 0.0081 (14)
C9 0.0277 (15) 0.0436 (17) 0.0282 (15) −0.0044 (12) 0.0078 (12) −0.0067 (12)

Geometric parameters (Å, °)

Sn1—Cl1 2.5796 (6) C5—C6 1.397 (4)
Sn1—Cl2 2.5722 (6) C2—H2 0.9500
Sn1—C1 2.149 (3) C3—H3 0.9500
Sn1—Cl1i 2.5796 (6) C4—H4 0.9500
Sn1—Cl2i 2.5722 (6) C5—H5 0.9500
Sn1—C1i 2.149 (3) C6—H6 0.9500
N1—C9 1.485 (3) C7—H7A 0.9800
N1—C7 1.487 (4) C7—H7B 0.9800
N1—C8 1.479 (4) C7—H7C 0.9800
N1—H1 0.85 (3) C8—H8A 0.9800
C1—C6 1.389 (4) C8—H8B 0.9800
C1—C2 1.393 (4) C8—H8C 0.9800
C2—C3 1.394 (4) C9—H9A 0.9800
C3—C4 1.388 (4) C9—H9B 0.9800
C4—C5 1.383 (4) C9—H9C 0.9800
Cl1—Sn1—Cl2 88.01 (2) C1—C2—H2 120.00
Cl1—Sn1—C1 89.39 (6) C3—C2—H2 120.00
Cl1—Sn1—Cl1i 180.00 C2—C3—H3 120.00
Cl1—Sn1—Cl2i 91.99 (2) C4—C3—H3 120.00
Cl1—Sn1—C1i 90.61 (6) C5—C4—H4 120.00
Cl2—Sn1—C1 90.86 (7) C3—C4—H4 120.00
Cl1i—Sn1—Cl2 91.99 (2) C4—C5—H5 120.00
Cl2—Sn1—Cl2i 180.00 C6—C5—H5 120.00
Cl2—Sn1—C1i 89.14 (7) C5—C6—H6 120.00
Cl1i—Sn1—C1 90.61 (6) C1—C6—H6 120.00
Cl2i—Sn1—C1 89.14 (7) N1—C7—H7A 109.00
C1—Sn1—C1i 180.00 N1—C7—H7B 109.00
Cl1i—Sn1—Cl2i 88.01 (2) N1—C7—H7C 110.00
Cl1i—Sn1—C1i 89.39 (6) H7A—C7—H7B 109.00
Cl2i—Sn1—C1i 90.86 (7) H7A—C7—H7C 110.00
C7—N1—C8 111.4 (3) H7B—C7—H7C 109.00
C7—N1—C9 111.8 (2) N1—C8—H8A 109.00
C8—N1—C9 111.4 (2) N1—C8—H8B 109.00
C8—N1—H1 109.3 (19) N1—C8—H8C 109.00
C9—N1—H1 106.8 (19) H8A—C8—H8B 109.00
C7—N1—H1 105.7 (17) H8A—C8—H8C 109.00
C2—C1—C6 119.4 (2) H8B—C8—H8C 109.00
Sn1—C1—C2 119.52 (18) N1—C9—H9A 109.00
Sn1—C1—C6 121.02 (19) N1—C9—H9B 109.00
C1—C2—C3 120.4 (2) N1—C9—H9C 109.00
C2—C3—C4 119.7 (2) H9A—C9—H9B 109.00
C3—C4—C5 120.1 (2) H9A—C9—H9C 109.00
C4—C5—C6 120.2 (2) H9B—C9—H9C 110.00
C1—C6—C5 120.1 (2)
Cl1—Sn1—C1—C2 −43.53 (19) Sn1—C1—C2—C3 177.05 (19)
Cl1—Sn1—C1—C6 134.3 (2) C6—C1—C2—C3 −0.8 (4)
Cl2—Sn1—C1—C2 −131.53 (19) Sn1—C1—C6—C5 −177.54 (19)
Cl2—Sn1—C1—C6 46.3 (2) C2—C1—C6—C5 0.3 (4)
Cl1i—Sn1—C1—C2 136.47 (19) C1—C2—C3—C4 0.1 (4)
Cl1i—Sn1—C1—C6 −45.7 (2) C2—C3—C4—C5 1.2 (4)
Cl2i—Sn1—C1—C2 48.47 (19) C3—C4—C5—C6 −1.7 (4)
Cl2i—Sn1—C1—C6 −133.7 (2) C4—C5—C6—C1 1.0 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl1 0.85 (3) 2.42 (3) 3.152 (2) 144 (3)
C5—H5···Cl1ii 0.95 2.79 3.678 (3) 156

Symmetry codes: (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2238).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Casas, J., Castineiras, A., Couce, M. D., Martinez, G., Sordo, J. & Varela, J. M. (1996). J. Organomet. Chem. 517, 165–172.
  4. Evans, J. C. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Fernandez, D., Garcia-Seijo, M. I., Kegl, T., Petocz, G., Kollar, L. & Garcia-Fermandez, M. E. (2002). Inorg. Chem. 41, 4435–4443. [DOI] [PubMed]
  8. Garcia-Seijo, M. I., Castineiras, A., Mahieu, B., Janosi, J., Berente, Z., Kollar, L. & Fernandez, G. (2001). Polyhedron, 20, 855–868.
  9. Hazell, A., Khoo, L. E., Ouyang, J., Rausch, B. J. & Tavares, Z. M. (1998). Acta Cryst. C54, 728–732.
  10. Kapoor, R. N., Guillory, P., Schulte, L., Cervantes- Lee, F., Haiduc, I., Parkanyi, L. & Pannell, K. H. (2005). Appl. Organomet. Chem. 19, 510–517.
  11. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C.W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Ouyang, J., Xu, Y. & Lian, E. K. (1998). J. Organomet. Chem. 561, 143–152.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Teoh, S. G., Teo, S. B., Yeap, G. Y. & Declerq, J. P. (1992). Polyhedron, 11, 2351–2356.
  16. Venkatraman, R., Ray, P. C. & Fronczek, F. R. (2004). Acta Cryst. E60, m1035–m1037. [DOI] [PubMed]
  17. Zhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460–m461.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811000870/su2238sup1.cif

e-67-0m203-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000870/su2238Isup2.hkl

e-67-0m203-Isup2.hkl (123.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES