Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 22;67(Pt 2):o476–o477. doi: 10.1107/S1600536811002467

1,5-Dimethyl-4-{[(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl­idene)(thio­phen-2-yl)meth­yl]amino}-2-phenyl-1H-pyrazol-3(2H)-one

Hualing Zhu a,*, Litong Ban b, Pingping Zhang c, Xinxin Zhao a, Junjie Ren a
PMCID: PMC3051767  PMID: 21523134

Abstract

In the title compound, C26H23N5O2S, an intra­molecular N—H⋯O inter­action generates an S(6) ring. The essentially planar S(6) and pyrazole rings [maximum deviations = −0.0270 (14) and 0.0195 (15) Å, respectively] are nearly coplanar, making a dihedral angle of 3.94 (6)°. The S(6) ring makes dihedral angles of 23.79 (6), 78.53 (6) and 67.91 (6)° with the pyrazolone ring, the pyrazole ring and the benzene ring of anti­pyrine, respectively. The structure exhibits a thienyl-ring flip disorder with occupancy factors in the ratio 0.82:0.18.

Related literature

For general background to pyrazolo­nes, see: Casas et al. (2007). For the anti­bacterial activity of pyrazolone Schiff bases, see: Zhang et al. (2008); Li et al. (2000). For our previous work in this area, see: Zhu et al. (2010a ,b ). For related structures, see: Shi et al. (2005); Goh et al. (2009). For disordered thienyl rings, see: Crundwell et al. (2003).graphic file with name e-67-0o476-scheme1.jpg

Experimental

Crystal data

  • C26H23N5O2S

  • M r = 469.55

  • Monoclinic, Inline graphic

  • a = 27.098 (3) Å

  • b = 7.9045 (8) Å

  • c = 22.308 (2) Å

  • β = 99.011 (8)°

  • V = 4719.4 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.42 × 0.36 × 0.34 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) T min = 0.932, T max = 0.944

  • 22080 measured reflections

  • 5570 independent reflections

  • 3806 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.144

  • S = 1.02

  • 5570 reflections

  • 322 parameters

  • 22 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002467/dn2653sup1.cif

e-67-0o476-sup1.cif (25.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002467/dn2653Isup2.hkl

e-67-0o476-Isup2.hkl (267.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2 0.86 1.96 2.6631 (18) 138

Acknowledgments

The authors are grateful for financial support from the Spark Program Foundation of Science and Technology Department of China (research Nos. 09ZHXHNC07900 and 2010 GA610009). The authors also thank the Technical Staff Serving Enterprise Action Committee of the Science and Technology Department of China for financial support (research No. 2009 GJ A10022).

supplementary crystallographic information

Comment

Pyrazolones form a very important class of heterocycles due to their properties and applications (Casas et al., 2007). Schiff-bases derived from 1-phenyl-3-methyl-4-acyl-5-pyrazolone have found extensive application in coordination chemistry (Shi et al., 2005)and in antibacterial activation (Zhang et al., 2008; Li et al., 2000). In continuation of our studies on pyrazolone schiff bases (Zhu et al., 2010a,b), we herein report the crystal structure of the title pyrazole compound.

The molecular structure of the title compound is shown in Fig. 1. An intramolecular N—H···O interaction generates a six- membered ring, producing an S(6) ring (O2 N3 C12 C17 C18), which stablizing the enamine–keto form of the compound. The S(6) ring and pyrazole ring (N4 N5 C17 C18 C19) are essentially planar,with the maximum deviations of -0.0270 (14) and 0.0195 (15) Å, respectively, at atoms C12 and C17.The two rings are coplanar to one another, as indicated by the dihedral angle formed between them of 3.94 (6)°. The S(6) ring makes dihedral angles of 23.79 (6)°,78.53 (6)° and 67.91 (6)° with the benzene ring of pyrazolone, the pyrazole ring and benzene ring of antipyrine,respectively. The bond lengths and angles agree well with those closely related pyrazole structures (Goh et al., 2009)

The structure exhibits a thienyl-ring flip disorder with the occupancy factors in the ratio 82/18.

Experimental

The title compound was synthesized by refluxing the mixture of 1-phenyl-3-methyl-4-(2-thenoyl)pyrazolone-5 (HPMTP) (15m mol) and 4-antipyrine (15m mol) in ethanol (100 ml) over a steam bath for about 4 h, then the solution was cooled down to room temperature. After seven days, pale yellow block was obtained and dried in air. The product was recrystallized from ethanol which afforded pale yellow and acerate crystals suitable for X–ray analysis.

Refinement

During refinement, the thienyl ring showed evidence of ring-flip disorder which is common for unsubstituted 2- and 3-thienyl rings (Crundwell et al., 2003). After finding three of the flipped disordered atoms in the difference map, the rest of the ring was generated and modeled. The occupancy factors of the disordered thienyl ring were first refine restraining the sum of the occupancy factore to be equal to 1.0. Once stabilised, the occupancy factors were fixed and not refined anymore. The final model suggested that the thienyl ring disorder was in the ratio 82/18. The disordered model was refined using the tools available in SHELXL-97 (Sheldrick, 2008): SADI for restraining distances, FLAT for constraining the thienyl rings to be planar, EXYZ for linking atoms occupying the same site and EADP to correlate anisotropic thermal parameters for related disordered atoms.

All H atoms were geometrically positioned and treated as riding on their parent atoms, with C—H = 0.93 Å for the aromatic, 0.96 Å for the methyl and N-H= 0.86 Å with Uiso(H)= 1.2 Ueq(Caromatic, N) or, 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radii. Only the major component of the disordered thienyl ring is represented for the sake of clarity.

Crystal data

C26H23N5O2S F(000) = 1968
Mr = 469.55 Dx = 1.322 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2yc Cell parameters from 5913 reflections
a = 27.098 (3) Å θ = 2.6–27.9°
b = 7.9045 (8) Å µ = 0.17 mm1
c = 22.308 (2) Å T = 293 K
β = 99.011 (8)° Prism, colourless
V = 4719.4 (9) Å3 0.42 × 0.36 × 0.34 mm
Z = 8

Data collection

Rigaku Saturn diffractometer 5570 independent reflections
Radiation source: rotating anode 3806 reflections with I > 2σ(I)
multilayer Rint = 0.037
Detector resolution: 7.31 pixels mm-1 θmax = 27.9°, θmin = 2.6°
ω scans h = −35→35
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) k = −10→8
Tmin = 0.932, Tmax = 0.944 l = −29→29
22080 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0825P)2] where P = (Fo2 + 2Fc2)/3
5570 reflections (Δ/σ)max = 0.003
322 parameters Δρmax = 0.23 e Å3
22 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.25433 (4) 1.02510 (13) 0.08661 (6) 0.0607 (3)
O2 0.08792 (4) 0.72515 (16) −0.01432 (5) 0.0574 (3)
N1 0.30507 (4) 0.78662 (15) 0.09168 (6) 0.0454 (3)
N2 0.29718 (5) 0.61104 (15) 0.09307 (6) 0.0453 (3)
N3 0.17055 (5) 0.75910 (17) 0.06681 (6) 0.0490 (3)
H3 0.1558 0.7573 0.0298 0.059*
N4 0.01707 (5) 0.77052 (16) 0.03130 (6) 0.0483 (3)
N5 0.00673 (5) 0.81903 (18) 0.08851 (7) 0.0531 (4)
C1 0.25902 (6) 0.87031 (19) 0.08467 (7) 0.0440 (4)
C2 0.22290 (5) 0.73667 (18) 0.07704 (7) 0.0418 (3)
C3 0.24689 (6) 0.58580 (18) 0.07935 (7) 0.0431 (3)
C4 0.22546 (7) 0.4148 (2) 0.06696 (9) 0.0652 (5)
H4A 0.1900 0.4190 0.0665 0.098*
H4B 0.2402 0.3383 0.0981 0.098*
H4C 0.2323 0.3762 0.0283 0.098*
C5 0.35010 (6) 0.8549 (2) 0.12487 (7) 0.0473 (4)
C6 0.36892 (6) 1.0029 (2) 0.10435 (8) 0.0560 (4)
H6 0.3523 1.0563 0.0698 0.067*
C7 0.41249 (7) 1.0712 (3) 0.13541 (11) 0.0717 (6)
H7 0.4250 1.1720 0.1223 0.086*
C8 0.43721 (8) 0.9902 (3) 0.18544 (12) 0.0836 (7)
H8 0.4667 1.0357 0.2060 0.100*
C9 0.41887 (8) 0.8425 (3) 0.20554 (10) 0.0843 (6)
H9 0.4363 0.7876 0.2392 0.101*
C10 0.37464 (7) 0.7747 (3) 0.17596 (9) 0.0655 (5)
H10 0.3616 0.6765 0.1903 0.079*
C11 0.33387 (7) 0.4992 (2) 0.07232 (9) 0.0628 (5)
H11A 0.3337 0.3918 0.0924 0.094*
H11B 0.3665 0.5489 0.0816 0.094*
H11C 0.3256 0.4832 0.0293 0.094*
C12 0.14164 (6) 0.78314 (18) 0.11001 (7) 0.0431 (4)
S1 0.16071 (3) 0.63681 (8) 0.22363 (3) 0.0702 (2) 0.82
C13 0.16636 (6) 0.79831 (19) 0.17339 (7) 0.0468 (4) 0.82
C14 0.19533 (11) 0.9188 (3) 0.20297 (12) 0.0704 (8) 0.82
H14 0.2031 1.0169 0.1834 0.085* 0.82
C15 0.21288 (18) 0.8917 (6) 0.26270 (14) 0.0765 (8) 0.82
H15 0.2330 0.9675 0.2874 0.092* 0.82
C16 0.19767 (14) 0.7430 (5) 0.28143 (13) 0.0709 (9) 0.82
H16 0.2060 0.7018 0.3208 0.085* 0.82
S1' 0.20046 (19) 0.9710 (5) 0.1965 (2) 0.0702 (2) 0.18
C13' 0.16636 (6) 0.79831 (19) 0.17339 (7) 0.0468 (4) 0.18
C14' 0.1637 (5) 0.6894 (16) 0.2181 (5) 0.0704 (8) 0.18
H14' 0.1463 0.5877 0.2123 0.085* 0.18
C15' 0.1879 (8) 0.738 (2) 0.2721 (6) 0.0765 (8) 0.18
H15' 0.1895 0.6745 0.3075 0.092* 0.18
C16' 0.2097 (7) 0.889 (2) 0.2692 (6) 0.0709 (9) 0.18
H16' 0.2278 0.9432 0.3025 0.085* 0.18
C17 0.06744 (5) 0.75638 (19) 0.03103 (7) 0.0449 (4)
C18 0.09039 (6) 0.78841 (18) 0.09237 (7) 0.0437 (4)
C19 0.04936 (6) 0.8289 (2) 0.12425 (8) 0.0504 (4)
C20 0.05032 (7) 0.8851 (3) 0.18855 (9) 0.0727 (6)
H20A 0.0181 0.9285 0.1934 0.109*
H20B 0.0750 0.9721 0.1982 0.109*
H20C 0.0585 0.7907 0.2153 0.109*
C21 −0.02273 (6) 0.75001 (19) −0.01723 (7) 0.0468 (4)
C22 −0.01595 (7) 0.6573 (2) −0.06807 (8) 0.0579 (4)
H22 0.0149 0.6082 −0.0706 0.069*
C23 −0.05544 (7) 0.6384 (2) −0.11491 (9) 0.0648 (5)
H23 −0.0511 0.5759 −0.1490 0.078*
C24 −0.10124 (7) 0.7112 (2) −0.11174 (9) 0.0650 (5)
H24 −0.1276 0.6986 −0.1436 0.078*
C25 −0.10744 (7) 0.8021 (2) −0.06118 (9) 0.0618 (5)
H25 −0.1383 0.8510 −0.0588 0.074*
C26 −0.06879 (6) 0.8225 (2) −0.01381 (9) 0.0540 (4)
H26 −0.0735 0.8844 0.0203 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0648 (7) 0.0375 (6) 0.0805 (9) 0.0072 (5) 0.0132 (6) 0.0016 (5)
O2 0.0493 (6) 0.0790 (8) 0.0465 (7) 0.0004 (6) 0.0160 (5) −0.0109 (6)
N1 0.0438 (7) 0.0364 (7) 0.0564 (8) 0.0001 (5) 0.0095 (6) −0.0004 (5)
N2 0.0477 (8) 0.0353 (7) 0.0541 (8) 0.0042 (5) 0.0122 (6) −0.0015 (5)
N3 0.0451 (7) 0.0643 (8) 0.0390 (7) 0.0024 (6) 0.0108 (6) −0.0003 (6)
N4 0.0422 (7) 0.0559 (8) 0.0494 (8) −0.0021 (6) 0.0152 (6) −0.0073 (6)
N5 0.0494 (8) 0.0609 (9) 0.0531 (8) −0.0029 (6) 0.0206 (7) −0.0073 (6)
C1 0.0466 (9) 0.0403 (8) 0.0462 (9) 0.0041 (7) 0.0108 (7) 0.0004 (6)
C2 0.0427 (8) 0.0444 (8) 0.0395 (8) 0.0028 (6) 0.0100 (6) 0.0004 (6)
C3 0.0506 (9) 0.0411 (8) 0.0393 (8) −0.0014 (7) 0.0122 (7) 0.0008 (6)
C4 0.0727 (12) 0.0466 (10) 0.0756 (13) −0.0091 (9) 0.0088 (10) −0.0026 (8)
C5 0.0449 (9) 0.0492 (9) 0.0496 (9) −0.0004 (7) 0.0132 (7) −0.0053 (7)
C6 0.0548 (10) 0.0545 (10) 0.0615 (11) −0.0064 (8) 0.0180 (8) −0.0054 (8)
C7 0.0580 (12) 0.0731 (13) 0.0879 (15) −0.0165 (10) 0.0234 (11) −0.0217 (11)
C8 0.0542 (12) 0.1040 (18) 0.0905 (17) −0.0113 (12) 0.0047 (12) −0.0319 (14)
C9 0.0697 (14) 0.1072 (18) 0.0688 (14) 0.0025 (13) −0.0116 (11) −0.0062 (13)
C10 0.0655 (12) 0.0736 (13) 0.0562 (11) −0.0005 (10) 0.0059 (9) 0.0044 (9)
C11 0.0650 (11) 0.0491 (10) 0.0797 (13) 0.0140 (8) 0.0277 (10) −0.0015 (9)
C12 0.0502 (9) 0.0384 (8) 0.0426 (8) −0.0014 (6) 0.0134 (7) 0.0004 (6)
S1 0.0933 (5) 0.0628 (5) 0.0532 (4) −0.0107 (4) 0.0077 (3) 0.0143 (3)
C13 0.0493 (9) 0.0510 (9) 0.0418 (8) 0.0006 (7) 0.0129 (7) −0.0007 (7)
C14 0.111 (2) 0.0564 (18) 0.0461 (14) −0.0152 (16) 0.0183 (13) 0.0058 (12)
C15 0.0871 (19) 0.096 (2) 0.0469 (15) −0.0203 (15) 0.0134 (14) −0.0138 (14)
C16 0.079 (2) 0.093 (2) 0.0389 (14) 0.0077 (16) 0.0025 (13) 0.0086 (14)
S1' 0.0933 (5) 0.0628 (5) 0.0532 (4) −0.0107 (4) 0.0077 (3) 0.0143 (3)
C13' 0.0493 (9) 0.0510 (9) 0.0418 (8) 0.0006 (7) 0.0129 (7) −0.0007 (7)
C14' 0.111 (2) 0.0564 (18) 0.0461 (14) −0.0152 (16) 0.0183 (13) 0.0058 (12)
C15' 0.0871 (19) 0.096 (2) 0.0469 (15) −0.0203 (15) 0.0134 (14) −0.0138 (14)
C16' 0.079 (2) 0.093 (2) 0.0389 (14) 0.0077 (16) 0.0025 (13) 0.0086 (14)
C17 0.0441 (9) 0.0447 (8) 0.0481 (9) −0.0024 (7) 0.0144 (7) −0.0034 (6)
C18 0.0440 (9) 0.0450 (8) 0.0447 (8) −0.0030 (6) 0.0149 (7) −0.0023 (6)
C19 0.0507 (10) 0.0533 (9) 0.0509 (9) −0.0034 (7) 0.0197 (8) −0.0041 (7)
C20 0.0693 (12) 0.0975 (16) 0.0566 (11) 0.0001 (10) 0.0262 (9) −0.0158 (10)
C21 0.0442 (9) 0.0437 (8) 0.0537 (9) −0.0050 (7) 0.0113 (7) 0.0004 (7)
C22 0.0509 (10) 0.0610 (11) 0.0621 (11) 0.0011 (8) 0.0097 (8) −0.0105 (8)
C23 0.0668 (12) 0.0650 (12) 0.0613 (12) −0.0039 (9) 0.0056 (9) −0.0120 (9)
C24 0.0592 (11) 0.0631 (12) 0.0688 (12) −0.0045 (9) −0.0019 (9) 0.0008 (9)
C25 0.0492 (10) 0.0544 (11) 0.0810 (14) 0.0022 (8) 0.0077 (9) 0.0043 (9)
C26 0.0488 (10) 0.0487 (9) 0.0660 (11) −0.0009 (7) 0.0138 (8) −0.0033 (8)

Geometric parameters (Å, °)

O1—C1 1.2316 (17) C12—C18 1.384 (2)
O2—C17 1.2524 (16) C12—C13 1.472 (2)
N1—C1 1.3994 (19) S1—C13 1.7213 (16)
N1—N2 1.4054 (17) S1—C16 1.722 (3)
N1—C5 1.430 (2) C13—C14 1.340 (3)
N2—C3 1.3637 (19) C14—C15 1.360 (4)
N2—C11 1.4590 (19) C14—H14 0.9300
N3—C12 1.3471 (18) C15—C16 1.335 (3)
N3—C2 1.412 (2) C15—H15 0.9300
N3—H3 0.8600 C16—H16 0.9300
N4—C17 1.3703 (19) S1'—C16' 1.728 (10)
N4—N5 1.4023 (17) C14'—C15' 1.336 (8)
N4—C21 1.413 (2) C14'—H14' 0.9300
N5—C19 1.299 (2) C15'—C16' 1.336 (8)
C1—C2 1.432 (2) C15'—H15' 0.9300
C2—C3 1.355 (2) C16'—H16' 0.9300
C3—C4 1.480 (2) C17—C18 1.434 (2)
C4—H4A 0.9600 C18—C19 1.446 (2)
C4—H4B 0.9600 C19—C20 1.498 (2)
C4—H4C 0.9600 C20—H20A 0.9600
C5—C10 1.380 (2) C20—H20B 0.9600
C5—C6 1.383 (2) C20—H20C 0.9600
C6—C7 1.382 (3) C21—C26 1.386 (2)
C6—H6 0.9300 C21—C22 1.387 (2)
C7—C8 1.368 (3) C22—C23 1.382 (3)
C7—H7 0.9300 C22—H22 0.9300
C8—C9 1.371 (3) C23—C24 1.380 (3)
C8—H8 0.9300 C23—H23 0.9300
C9—C10 1.382 (3) C24—C25 1.370 (3)
C9—H9 0.9300 C24—H24 0.9300
C10—H10 0.9300 C25—C26 1.376 (3)
C11—H11A 0.9600 C25—H25 0.9300
C11—H11B 0.9600 C26—H26 0.9300
C11—H11C 0.9600
C1—N1—N2 109.46 (11) C18—C12—C13 123.81 (13)
C1—N1—C5 123.58 (12) C13—S1—C16 91.47 (12)
N2—N1—C5 118.79 (12) C14—C13—C12 132.40 (16)
C3—N2—N1 106.84 (11) C14—C13—S1 108.14 (15)
C3—N2—C11 123.14 (13) C12—C13—S1 119.45 (12)
N1—N2—C11 118.55 (12) C13—C14—C15 117.3 (3)
C12—N3—C2 125.74 (14) C13—C14—H14 121.3
C12—N3—H3 117.1 C15—C14—H14 121.3
C2—N3—H3 117.1 C16—C15—C14 111.6 (3)
C17—N4—N5 111.56 (13) C16—C15—H15 124.2
C17—N4—C21 128.95 (13) C14—C15—H15 124.2
N5—N4—C21 119.43 (12) C15—C16—S1 111.5 (3)
C19—N5—N4 106.83 (12) C15—C16—H16 124.2
O1—C1—N1 124.12 (14) S1—C16—H16 124.2
O1—C1—C2 131.66 (14) C15'—C14'—H14' 122.8
N1—C1—C2 104.21 (12) C16'—C15'—C14' 111.7 (12)
C3—C2—N3 125.48 (14) C16'—C15'—H15' 124.1
C3—C2—C1 109.25 (13) C14'—C15'—H15' 124.1
N3—C2—C1 125.25 (13) C15'—C16'—S1' 112.5 (11)
C2—C3—N2 109.66 (13) C15'—C16'—H16' 123.7
C2—C3—C4 128.65 (15) S1'—C16'—H16' 123.7
N2—C3—C4 121.65 (14) O2—C17—N4 125.97 (15)
C3—C4—H4A 109.5 O2—C17—C18 128.66 (14)
C3—C4—H4B 109.5 N4—C17—C18 105.36 (12)
H4A—C4—H4B 109.5 C12—C18—C17 122.15 (13)
C3—C4—H4C 109.5 C12—C18—C19 132.96 (15)
H4A—C4—H4C 109.5 C17—C18—C19 104.85 (13)
H4B—C4—H4C 109.5 N5—C19—C18 111.29 (14)
C10—C5—C6 120.45 (17) N5—C19—C20 119.07 (14)
C10—C5—N1 121.06 (15) C18—C19—C20 129.57 (16)
C6—C5—N1 118.48 (15) C19—C20—H20A 109.5
C7—C6—C5 119.67 (19) C19—C20—H20B 109.5
C7—C6—H6 120.2 H20A—C20—H20B 109.5
C5—C6—H6 120.2 C19—C20—H20C 109.5
C8—C7—C6 119.8 (2) H20A—C20—H20C 109.5
C8—C7—H7 120.1 H20B—C20—H20C 109.5
C6—C7—H7 120.1 C26—C21—C22 119.95 (16)
C7—C8—C9 120.6 (2) C26—C21—N4 119.76 (15)
C7—C8—H8 119.7 C22—C21—N4 120.29 (14)
C9—C8—H8 119.7 C23—C22—C21 119.30 (16)
C8—C9—C10 120.4 (2) C23—C22—H22 120.3
C8—C9—H9 119.8 C21—C22—H22 120.3
C10—C9—H9 119.8 C24—C23—C22 120.84 (18)
C5—C10—C9 119.1 (2) C24—C23—H23 119.6
C5—C10—H10 120.5 C22—C23—H23 119.6
C9—C10—H10 120.5 C25—C24—C23 119.24 (18)
N2—C11—H11A 109.5 C25—C24—H24 120.4
N2—C11—H11B 109.5 C23—C24—H24 120.4
H11A—C11—H11B 109.5 C24—C25—C26 121.12 (17)
N2—C11—H11C 109.5 C24—C25—H25 119.4
H11A—C11—H11C 109.5 C26—C25—H25 119.4
H11B—C11—H11C 109.5 C25—C26—C21 119.55 (17)
N3—C12—C18 118.10 (14) C25—C26—H26 120.2
N3—C12—C13 118.08 (14) C21—C26—H26 120.2
C1—N1—N2—C3 7.51 (15) N3—C12—C13—S1 −109.04 (14)
C5—N1—N2—C3 157.23 (12) C18—C12—C13—S1 69.48 (18)
C1—N1—N2—C11 152.10 (15) C16—S1—C13—C14 0.23 (16)
C5—N1—N2—C11 −58.19 (19) C16—S1—C13—C12 179.22 (18)
C17—N4—N5—C19 −2.41 (18) C12—C13—C14—C15 −179.3 (2)
C21—N4—N5—C19 −179.86 (14) S1—C13—C14—C15 −0.51 (16)
N2—N1—C1—O1 174.18 (15) C13—C14—C15—C16 0.6 (2)
C5—N1—C1—O1 26.2 (2) C14—C15—C16—S1 −0.4 (2)
N2—N1—C1—C2 −4.47 (15) C13—S1—C16—C15 0.1 (2)
C5—N1—C1—C2 −152.43 (14) C14'—C15'—C16'—S1' −1.0 (5)
C12—N3—C2—C3 97.57 (19) N5—N4—C17—O2 −175.43 (15)
C12—N3—C2—C1 −84.5 (2) C21—N4—C17—O2 1.7 (3)
O1—C1—C2—C3 −178.69 (17) N5—N4—C17—C18 3.33 (16)
N1—C1—C2—C3 −0.18 (16) C21—N4—C17—C18 −179.53 (14)
O1—C1—C2—N3 3.1 (3) N3—C12—C18—C17 4.9 (2)
N1—C1—C2—N3 −178.36 (13) C13—C12—C18—C17 −173.64 (14)
N3—C2—C3—N2 −176.91 (13) N3—C12—C18—C19 −172.35 (16)
C1—C2—C3—N2 4.92 (17) C13—C12—C18—C19 9.1 (3)
N3—C2—C3—C4 5.7 (3) O2—C17—C18—C12 −2.1 (3)
C1—C2—C3—C4 −172.46 (16) N4—C17—C18—C12 179.21 (14)
N1—N2—C3—C2 −7.60 (16) O2—C17—C18—C19 175.83 (16)
C11—N2—C3—C2 −150.16 (14) N4—C17—C18—C19 −2.88 (16)
N1—N2—C3—C4 170.00 (14) N4—N5—C19—C18 0.41 (18)
C11—N2—C3—C4 27.4 (2) N4—N5—C19—C20 177.69 (15)
C1—N1—C5—C10 117.51 (17) C12—C18—C19—N5 179.15 (16)
N2—N1—C5—C10 −27.7 (2) C17—C18—C19—N5 1.57 (18)
C1—N1—C5—C6 −63.0 (2) C12—C18—C19—C20 2.2 (3)
N2—N1—C5—C6 151.78 (13) C17—C18—C19—C20 −175.35 (18)
C10—C5—C6—C7 −0.2 (2) C17—N4—C21—C26 −158.43 (15)
N1—C5—C6—C7 −179.70 (14) N5—N4—C21—C26 18.5 (2)
C5—C6—C7—C8 1.3 (3) C17—N4—C21—C22 21.8 (2)
C6—C7—C8—C9 −0.7 (3) N5—N4—C21—C22 −161.24 (15)
C7—C8—C9—C10 −1.0 (3) C26—C21—C22—C23 0.1 (3)
C6—C5—C10—C9 −1.4 (3) N4—C21—C22—C23 179.81 (15)
N1—C5—C10—C9 178.03 (16) C21—C22—C23—C24 0.3 (3)
C8—C9—C10—C5 2.0 (3) C22—C23—C24—C25 −0.4 (3)
C2—N3—C12—C18 −174.54 (14) C23—C24—C25—C26 0.2 (3)
C2—N3—C12—C13 4.1 (2) C24—C25—C26—C21 0.1 (3)
N3—C12—C13—C14 69.7 (2) C22—C21—C26—C25 −0.2 (2)
C18—C12—C13—C14 −111.8 (2) N4—C21—C26—C25 −179.99 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···O2 0.86 1.96 2.6631 (18) 138

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2653).

References

  1. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  2. Casas, J. S., Garcl’a-Tasende,M. S., Sanchez, A., Sordo, J. & Touceda, A. (2007). Coord. Chem. Rev. 251, 1561–1589.
  3. Crundwell, G., Sullivan, J., Pelto, R. & Kantardjieff, K. (2003). J. Chem. Crystallogr. 33, 239–244.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Goh, J. H., Fun, H.-K., Nithinchandra,, Rai, N. S. & Kalluraya, B. (2009). Acta Cryst. E65, o3099–o3100. [DOI] [PMC free article] [PubMed]
  6. Li, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earth, 18, 233–236.
  7. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005). Acta Cryst. E61, m2320–m2321.
  10. Zhang, H.-Q., Li, J.-Z., Zhang, Y. & Zhang, D. (2008). Chin. Inorg. Chem. 24, 990–993.
  11. Zhu, H., Wei, Z., Bu, L., Xu, X. & Shi, J. (2010a). Acta Cryst. E66, m904. [DOI] [PMC free article] [PubMed]
  12. Zhu, H., Zhu, J., Ban, L., Zhang, P. & Zhang, M. (2010b). Acta Cryst. E66, o2724. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002467/dn2653sup1.cif

e-67-0o476-sup1.cif (25.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002467/dn2653Isup2.hkl

e-67-0o476-Isup2.hkl (267.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES