Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 29;67(Pt 2):o508. doi: 10.1107/S1600536811001978

2,7-Dimethyl-2,7-diazo­niapyrene bis­(hexa­fluoro­phosphate)

Li Ang a,*
PMCID: PMC3051768  PMID: 21523159

Abstract

In the title compound, C16H14N2 2+·2PF6 , the 2,7-dimethyl-2,7-diaza­pyrenium (DM-diaz) cation lies on a crystallographic twofold rotation axes. The diaz groups are nearly coplanar, with a maximum deviation of 0.008 (3) Å. In the crystal, mol­ecules are linked into a two-dimensional lamellar framework parallel to (104) through weak C—H⋯F inter­actions.

Related literature

For general background to 2,7-disubstituted diaza­pyrenium dications, see: Ashton et al. (1999); Yen et al. (2009); Steuerman et al. (2004); Lilienthal et al. (1996); Sindelar et al. (2005); Lin et al. (2006). For related structures, see: Blake et al. (1997); Dinolfo et al. (2004). graphic file with name e-67-0o508-scheme1.jpg

Experimental

Crystal data

  • C16H14N2 2+·2PF6

  • M r = 524.23

  • Monoclinic, Inline graphic

  • a = 6.7654 (14) Å

  • b = 10.653 (2) Å

  • c = 13.422 (3) Å

  • β = 91.03 (3)°

  • V = 967.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.31 × 0.31 × 0.19 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.899, T max = 0.937

  • 7699 measured reflections

  • 1756 independent reflections

  • 1439 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.182

  • S = 1.06

  • 1756 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811001978/bg2385sup1.cif

e-67-0o508-sup1.cif (14.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001978/bg2385Isup2.hkl

e-67-0o508-Isup2.hkl (86.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯F2i 0.93 2.48 3.367 (4) 160
C7—H7⋯F4ii 0.93 2.51 3.418 (5) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the fund of Zhejiang Gongshang University (No. 10–3).

supplementary crystallographic information

Comment

2,7-Disubstituted diazapyrenium dications, which combine the features of pyrene, methylviologen, and nucletic acid intercalators, are charming pi-electron deficient building blocks in supramolecular chemistry (Ashton et al., 1999; Yen et al., 2009). They have been widely used as the electron-acceptors for electron-donating units such as hydroquinones and aromatic carboxylates (Steuerman et al., 2004; Lilienthal et al., 1996). Furthermore, due to their luminescence properties, they have also been as fluorescence probes for ion detection (Sindelar et al., 2005) and neurotransmition (Lin et al., 2006). Herein, we report the crystal structure of one of these disubstituted diazapyrenium dications, the N,N'-dimethyl-2,7-diazapyrenium, C16H14N2.2PF6, (DM-diaz).

The cation lies on a crystallographic twofold rotation axes; diaz groups are nearly coplanar with a maximum deviation of 0.008 (3) Å. Unlike many structures that contain diaz (Blake et al., 1997; Dinolfo et al., 2004), Dm-diaz exhibits no face-to-face pi-pi interactions between diaz molecules in the structure. C—H···F interactions are observed between the methyl groups of the DM-diaz molecules and hexafluorophoshate counterions (Table 1), forming a two-dimensional lamellar framework parallel to (101) (Figure 2).

Experimental

A solution of 2,7-diazapyrene (0.210 g, 1.03 mmol) and iodomethane (0.568 g, 4.02 mmol) in acetonitrile (15 ml) was stirred and refluxed for 3 h. After it was cooled to room temperature, a red solid was isolated on a filter and washed with ethyl ether (30 ml). The solid was dissolved with water (75 ml) and a saturated aqueous solution of NH4PF6 (2.44 g, 15.0 mmol) was added until no further precipitate was observed. The red solid was isolated on a filter, washed with water and dried under vacuum to afford the product (0.423 g, 78.4%). Red crystals were obtained by vapor diffusion of isopropyl ether into an acetonitrile solution over a period of 5 d. 1H NMR (500 MHz, CD3CN, 295 K) δ (p.p.m.) 9.88 (4H,s), 8.85 (4H, s), 5.14 (4H, t, J = 5.2 Hz), 3.45 (4H, m), 3.45 (2H, t, J = 5.5 Hz).

Refinement

H atoms bonded to C atoms were palced in geometrically calculated positionand were refined using a riding model, with C—Haromatic = 0.93 Å, C—Hmethyl = 0.96 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 30% probability level. Symmetry code: (A) 2-x, 1-y, 1-z

Fig. 2.

Fig. 2.

The two-dimensional layer of the compound, parallel to (101).

Crystal data

C16H14N22+·2PF6 F(000) = 524
Mr = 524.23 Dx = 1.800 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6424 reflections
a = 6.7654 (14) Å θ = 3.0–27.5°
b = 10.653 (2) Å µ = 0.35 mm1
c = 13.422 (3) Å T = 293 K
β = 91.03 (3)° Block, yellow
V = 967.2 (3) Å3 0.31 × 0.31 × 0.19 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer 1756 independent reflections
Radiation source: fine-focus sealed tube 1439 reflections with I > 2σ(I)
graphite Rint = 0.021
Detector resolution: 0 pixels mm-1 θmax = 25.4°, θmin = 3.0°
ω scans h = −8→7
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −12→12
Tmin = 0.899, Tmax = 0.937 l = −16→16
7699 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.106P)2 + 0.7563P] where P = (Fo2 + 2Fc2)/3
1756 reflections (Δ/σ)max < 0.001
146 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.73691 (12) 0.87716 (8) 0.67479 (6) 0.0486 (4)
F1 0.7852 (5) 0.9813 (3) 0.7544 (3) 0.1277 (13)
F2 0.7768 (4) 0.7779 (3) 0.7596 (2) 0.1015 (10)
F3 0.5103 (3) 0.8793 (2) 0.7022 (2) 0.0842 (8)
F4 0.7012 (5) 0.9817 (4) 0.5943 (3) 0.1329 (14)
F5 0.9644 (3) 0.8750 (3) 0.6478 (2) 0.0953 (10)
F6 0.6946 (4) 0.7712 (3) 0.5961 (2) 0.1071 (11)
N1 1.1916 (4) 0.2419 (2) 0.61997 (19) 0.0458 (6)
C1 1.0682 (4) 0.6661 (3) 0.4751 (2) 0.0399 (7)
C2 1.2564 (4) 0.6724 (3) 0.5268 (2) 0.0459 (7)
H2 1.3272 0.7472 0.5275 0.055*
C3 1.3308 (4) 0.5710 (3) 0.5740 (2) 0.0463 (7)
H3 1.4527 0.5765 0.6068 0.056*
C4 1.2250 (4) 0.4551 (3) 0.5743 (2) 0.0390 (7)
C5 1.0387 (4) 0.4467 (2) 0.52485 (19) 0.0360 (6)
C6 1.2952 (4) 0.3482 (3) 0.6213 (2) 0.0459 (7)
H6 1.4170 0.3505 0.6545 0.055*
C7 1.0142 (4) 0.2319 (3) 0.5739 (2) 0.0448 (7)
H7 0.9465 0.1560 0.5750 0.054*
C8 1.2764 (7) 0.1282 (3) 0.6680 (3) 0.0680 (11)
H8A 1.1728 0.0810 0.6984 0.102*
H8C 1.3721 0.1526 0.7180 0.102*
H8B 1.3392 0.0774 0.6187 0.102*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0456 (6) 0.0520 (6) 0.0482 (6) −0.0031 (3) −0.0017 (4) −0.0009 (4)
F1 0.142 (3) 0.105 (2) 0.136 (3) −0.007 (2) −0.003 (2) −0.068 (2)
F2 0.097 (2) 0.105 (2) 0.103 (2) 0.0185 (16) −0.0030 (16) 0.0420 (17)
F3 0.0548 (14) 0.105 (2) 0.0938 (18) 0.0116 (12) 0.0153 (12) 0.0123 (14)
F4 0.109 (2) 0.150 (3) 0.140 (3) −0.012 (2) −0.008 (2) 0.093 (2)
F5 0.0494 (13) 0.125 (2) 0.112 (2) −0.0215 (13) 0.0103 (13) −0.0286 (17)
F6 0.0775 (16) 0.143 (3) 0.101 (2) −0.0446 (17) 0.0222 (15) −0.0672 (19)
N1 0.0497 (14) 0.0464 (14) 0.0414 (13) 0.0030 (11) 0.0029 (11) 0.0041 (11)
C1 0.0359 (14) 0.0422 (15) 0.0418 (15) −0.0054 (12) 0.0052 (12) −0.0036 (12)
C2 0.0366 (15) 0.0449 (17) 0.0561 (19) −0.0096 (12) −0.0002 (14) −0.0050 (14)
C3 0.0322 (14) 0.0558 (18) 0.0509 (17) −0.0075 (13) −0.0040 (13) −0.0064 (14)
C4 0.0323 (14) 0.0464 (16) 0.0381 (14) −0.0014 (11) −0.0005 (11) −0.0040 (12)
C5 0.0325 (14) 0.0415 (15) 0.0341 (14) −0.0027 (11) 0.0043 (11) −0.0053 (11)
C6 0.0409 (16) 0.0567 (18) 0.0399 (16) 0.0017 (13) −0.0031 (13) −0.0028 (13)
C7 0.0461 (17) 0.0434 (16) 0.0451 (16) −0.0035 (13) 0.0076 (14) −0.0001 (13)
C8 0.078 (3) 0.057 (2) 0.068 (2) 0.0077 (18) −0.015 (2) 0.0186 (18)

Geometric parameters (Å, °)

P1—F4 1.567 (3) C2—C3 1.346 (4)
P1—F6 1.568 (2) C2—H2 0.9300
P1—F1 1.570 (3) C3—C4 1.427 (4)
P1—F2 1.574 (3) C3—H3 0.9300
P1—F3 1.583 (2) C4—C6 1.382 (4)
P1—F5 1.587 (2) C4—C5 1.417 (4)
N1—C6 1.332 (4) C5—C5i 1.413 (5)
N1—C7 1.344 (4) C6—H6 0.9300
N1—C8 1.483 (4) C7—H7 0.9300
C1—C7i 1.382 (4) C8—H8A 0.9600
C1—C5i 1.402 (4) C8—H8C 0.9600
C1—C2 1.440 (4) C8—H8B 0.9600
F4—P1—F6 91.3 (2) C1—C2—H2 119.7
F4—P1—F1 89.7 (2) C2—C3—C4 120.8 (3)
F6—P1—F1 178.30 (18) C2—C3—H3 119.6
F4—P1—F2 176.9 (2) C4—C3—H3 119.6
F6—P1—F2 91.8 (2) C6—C4—C5 117.2 (3)
F1—P1—F2 87.2 (2) C6—C4—C3 123.1 (3)
F4—P1—F3 90.70 (16) C5—C4—C3 119.7 (3)
F6—P1—F3 90.07 (15) C1i—C5—C5i 120.2 (3)
F1—P1—F3 91.28 (17) C1i—C5—C4 120.6 (3)
F2—P1—F3 89.74 (15) C5i—C5—C4 119.3 (3)
F4—P1—F5 89.51 (18) N1—C6—C4 121.2 (3)
F6—P1—F5 90.11 (14) N1—C6—H6 119.4
F1—P1—F5 88.54 (17) C4—C6—H6 119.4
F2—P1—F5 90.04 (17) N1—C7—C1i 120.4 (3)
F3—P1—F5 179.73 (16) N1—C7—H7 119.8
C6—N1—C7 122.6 (3) C1i—C7—H7 119.8
C6—N1—C8 119.3 (3) N1—C8—H8A 109.5
C7—N1—C8 118.1 (3) N1—C8—H8C 109.5
C7i—C1—C5i 118.0 (3) H8A—C8—H8C 109.5
C7i—C1—C2 122.6 (3) N1—C8—H8B 109.5
C5i—C1—C2 119.4 (3) H8A—C8—H8B 109.5
C3—C2—C1 120.6 (3) H8C—C8—H8B 109.5
C3—C2—H2 119.7

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···F2ii 0.93 2.48 3.367 (4) 160
C7—H7···F4iii 0.93 2.51 3.418 (5) 167

Symmetry codes: (ii) −x+5/2, y−1/2, −z+3/2; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2385).

References

  1. Ashton, P. F., Boyd, S. E., Brindle, A., Langford, S. J., Menzer, S., Preece, J. A., Raymo, F. M., Spencer, N., Stoddart, J. F., White, A. J. P. & Williams, D. J. (1999). New J. Chem. 23, 587–602.
  2. Blake, A. J., Champness, N. R., Khlobystov, A. N., Lemenovskii, D. A., Li, W. -S. & Schöder, M. (1997). Chem. Commun. pp. 1339–1340.
  3. Dinolfo, P. D., Williams, M. E., Stern, C. L. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 12989–13001. [DOI] [PubMed]
  4. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  6. Lilienthal, N. D., Enlow, M. A., Othman, L., Smith, E. A. F. & Smith, D. K. (1996). J. Electroanal. Chem. 414, 107–114.
  7. Lin, C.-F., Liu, Y.-H., Lai, C.-C., Peng, S.-M. & Chiu, S.-H. (2006). Chem. Eur. J. 12, 4594–4599. [DOI] [PubMed]
  8. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sindelar, V., Cejas, M. A., Raymo, F. M., Chen, W., Parker, S. E. & Kaifer, A. E. (2005). Chem. Eur. J. 11, 7054–7059. [DOI] [PubMed]
  12. Steuerman, D. W., Tseng, H.-R., Peters, A. J., Flood, A. H., Jeppesen, J. O., Nielsen, K. A., Stoddart, J. F. & Health, J. R. (2004). Angew. Chem. Int. Ed. 43, 6486–6491. [DOI] [PubMed]
  13. Yen, M.-L., Chen, N.-C., Lai, C.-C., Liu, Y.-H., Peng, S.-M. & Chiu, S.-H. (2009). Org. Lett. 11, 4604–4607. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811001978/bg2385sup1.cif

e-67-0o508-sup1.cif (14.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001978/bg2385Isup2.hkl

e-67-0o508-Isup2.hkl (86.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES