Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):o390–o391. doi: 10.1107/S1600536811001024

1-Methyl­piperazine-1,4-diium dipicrate

Grzegorz Dutkiewicz a, S Samshuddin b, B Narayana b, H S Yathirajan c, Maciej Kubicki a,*
PMCID: PMC3051773  PMID: 21523064

Abstract

In the crystal structure of the title compound [systematic name: 1-methyl­piperazine-1,4-diium bis­(2,4,6-trinitro­phen­ol­ate)], C5H14N2 2+·2C6H2N3O7 , the ionic components are connected by relatively strong N—H⋯O hydrogen bonds into centrosymmetric six-membered conglomerates, which comprise two dications and four anions. Besides Coulombic inter­actions, only weak C—H⋯O inter­actions and some stacking between picrates (separation between the planes of ca. 3.4 Å but only a small overlapping) can be identified between these ‘building blocks’ of the crystal structure. The piperazine ring adopts a chair conformation with the methyl substituent in the equatorial position. In the picrate anions, the twist angles of the nitro groups depend on their positions relative to the phenolate O atom: it is much smaller for the NO2 groups para to the C—O group [15.23 (9)and 3.92 (14)°] than for the groups in the ortho positions [28.76 (13)–39.84 (11)°].

Related literature

For examples of the biological activity of piperazines: Brockunier et al. (2004); Bogatcheva et al. (2006). For the crystal structures of simple piperidinium picrates, see: Fun et al. (2010); Li et al. (2009); Verdonk et al. (1997); Wang & Jia (2008). For a description of the Cambridge Structural Database, see: Allen (2002). For asymmetry parameters, see: Duax & Norton (1975). graphic file with name e-67-0o390-scheme1.jpg

Experimental

Crystal data

  • C5H14N2 2+·2C6H2N3O7

  • M r = 558.39

  • Triclinic, Inline graphic

  • a = 8.2001 (12) Å

  • b = 10.1780 (15) Å

  • c = 13.7399 (18) Å

  • α = 89.798 (12)°

  • β = 78.130 (11)°

  • γ = 81.558 (12)°

  • V = 1109.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 295 K

  • 0.4 × 0.15 × 0.07 mm

Data collection

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.936, T max = 1.000

  • 21056 measured reflections

  • 4891 independent reflections

  • 3624 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.123

  • S = 0.95

  • 4891 reflections

  • 424 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001024/fl2330sup1.cif

e-67-0o390-sup1.cif (24.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001024/fl2330Isup2.hkl

e-67-0o390-Isup2.hkl (234.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O1A 0.892 (18) 1.831 (18) 2.6305 (17) 148.1 (16)
N11—H11⋯O22A 0.892 (18) 2.356 (18) 2.996 (2) 128.8 (14)
N14—H14B⋯O1Bi 0.88 (2) 1.98 (2) 2.8181 (19) 157.3 (17)
N14—H14A⋯O1B 0.92 (2) 1.99 (2) 2.7962 (18) 146.4 (18)
N14—H14A⋯O22B 0.92 (2) 2.28 (2) 2.992 (2) 133.9 (16)
C5A—H5A⋯O21Aii 0.917 (19) 2.476 (19) 3.383 (2) 170.3 (16)
C5B—H5B⋯O21Biii 0.913 (18) 2.487 (18) 3.394 (2) 172.3 (15)
C11A—H11C⋯O41Aiv 0.93 (3) 2.48 (3) 3.345 (2) 155 (2)
C11A—H11A⋯O62Aiii 0.94 (3) 2.57 (3) 3.496 (3) 168 (2)
C13—H13A⋯O62Bv 0.96 (2) 2.46 (2) 3.386 (2) 162.9 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

SS thanks Mangalore University for the research facilities.

supplementary crystallographic information

Comment

Piperazines are among the most important building blocks in today's drug discovery. They are found in biologically active compounds across a number of different therapeutic areas such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (for instance, Brockunier et al., 2004, Bogatcheva et al., 2006). A small number of piperazinium picrates or piperazinediium dipicrates have been structurally characterized, however generally the cations were heavily substituted. On the other hand, picric acid (pKa=0.38) has been studied for its ability to form salts which display wide spectrum of intermolecular interactions, for instance hydrogen bonds of different strengths and/or π···π stacking interactions. In the course of our studies of picrates of simple organic cations we have determined the crystal and molecular structure of the title compound (I: 1-methylpiprazinediium di(2,4,6-trinitrophenolate), Scheme 1).

In the CSD (Allen, 2002; Version 5.31 of Nov. 2009, updated August 2010) there are only a few picrates of simple piperazinium derivatives, for instance 4-(4-carboxybenzyl)-1-methylpiperazin-1-ium picrate (Li et al., 2009), 1-(2-methoxyphenyl)piperazinium picrate (Verdonk et al., 1997) or piperazine-1,4-diium–dipicrate piperazine complex (Wang & Jia, 2008). Also some more complicated structures were reported, for instance 4-(3-Carboxy-1-ethyl-6-fluoro-4-oxo-1,4- dihydro-7-quinolyl)-1-methylpiperazinium picrate (Fun et al., 2010).

In the crystal structure I there are two picrate anions and 1-methylpiperidinediium dication (Fig. 1); the presence of ionic species is supported by the successful location and refinement of the hydrogen atoms at both nitrogen atoms in the piperidine ring as well as by inspection of the pattern of bond distances and angles. The piperazine ring adopts an almost ideal chair conformation; the values of asymmetry parameters (Duax & Norton, 1975), which measure the deviations from the ideal symmetry (in the case D3d), are very small, less than 1.6°. The methyl substituent is in the equatorial position as can be seen from the torsion angles C13—C12—C11—C11A: 176.60 (15)° and C15—C16—C11—C11A: -176.72 (14)°. Both aromatic rings are in a good approximation planar, maximum deviation from the least-squares plane calculated by the six ring atoms is 0.0248 (11)Å in the anion A and 0.0297 (10)Å in anion B. The nitro groups are twisted with respect to the ring planes, for the groups ortho with respect to the C—O- group (at C2 and C6) this twist is of course significantly larger (ranging from 28.76 (13)° to 39.84 (11)°) than for the groups in para positions, at C4 (15.23 (9)° in anion A, only 3.92 (14)° in B).

In the crystal structure the building block is made up of a centrosymetric pair of hydrogen bonded ionic components: two dications and four anions (Table 1, Fig. 2). Using graph set notation one can identify - taking into account the primary interactions only - the centrosymmetric ring R24(8) and dimeric D motifs. Interestingly no strong hydrogen bonds are observed between these structures; besides the coulombic interactions only weak C—H···O and some stacking between picrates (Fig. 3) organize the crystal packing.

Experimental

1-Methyl piperazine (1.00 g, 0.01 mol) was dissolved in 20 ml of alcohol. Picric acid (4.58 g, 0.02 mol) was dissolved in 50 ml of water. Both the solutions were mixed and to this, 5 ml of 3M HCl was added and stirred for few minutes. The formed complex was filtered and dried, crystals appropriate for X-ray data collection were found without further recrystallization (m. p. >523 K). Composition: Found (Calculated): C: 36.48 (36.57); H: 3.20 (3.25); N:19.98 (20.07).

Refinement

Hydrogen atoms were located in difference Fourier maps and isotropically refined.

Figures

Fig. 1.

Fig. 1.

Anisotropic ellipsoid representation of the ionic components of I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii; hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

The centrosymmetric dimer of salt I; hydrogen bonds are shown as dashed lines. Symmetry codes: (i) -x,1 - y,1 - z.

Fig. 3.

Fig. 3.

The crystal packing as seen approximately along y-direction. Hydrogen bonds are shown as dashed lines.

Crystal data

C5H14N22+·2C6H2N3O7 Z = 2
Mr = 558.39 F(000) = 576
Triclinic, P1 Dx = 1.671 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.2001 (12) Å Cell parameters from 12041 reflections
b = 10.1780 (15) Å θ = 3.0–28.0°
c = 13.7399 (18) Å µ = 0.15 mm1
α = 89.798 (12)° T = 295 K
β = 78.130 (11)° Block, yellow
γ = 81.558 (12)° 0.4 × 0.15 × 0.07 mm
V = 1109.6 (3) Å3

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 4891 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3624 reflections with I > 2σ(I)
graphite Rint = 0.021
Detector resolution: 16.1544 pixels mm-1 θmax = 28.0°, θmin = 3.0°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −13→12
Tmin = 0.936, Tmax = 1.000 l = −18→18
21056 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0725P)2 + 0.3607P] where P = (Fo2 + 2Fc2)/3
4891 reflections (Δ/σ)max < 0.001
424 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A −0.10838 (19) 0.86643 (15) 0.10686 (11) 0.0303 (3)
O1A −0.02003 (16) 0.75573 (12) 0.08429 (10) 0.0469 (3)
C2A −0.04660 (18) 0.98367 (16) 0.13439 (12) 0.0309 (3)
N2A 0.12392 (16) 0.97199 (15) 0.15030 (11) 0.0394 (3)
O21A 0.19522 (16) 1.07010 (15) 0.13867 (13) 0.0601 (4)
O22A 0.18805 (16) 0.86647 (14) 0.17951 (12) 0.0568 (4)
C3A −0.1404 (2) 1.10787 (16) 0.14843 (12) 0.0314 (3)
H3A −0.091 (3) 1.179 (2) 0.1651 (16) 0.052 (6)*
C4A −0.30793 (18) 1.12289 (14) 0.14285 (11) 0.0284 (3)
N4A −0.40990 (18) 1.25160 (13) 0.16554 (10) 0.0350 (3)
O41A −0.56396 (15) 1.25745 (13) 0.18252 (10) 0.0474 (3)
O42A −0.33873 (18) 1.34906 (12) 0.16819 (12) 0.0566 (4)
C5A −0.38244 (19) 1.01553 (15) 0.12063 (11) 0.0288 (3)
H5A −0.495 (2) 1.0237 (18) 0.1186 (13) 0.036 (5)*
C6A −0.28521 (19) 0.89319 (14) 0.10388 (11) 0.0294 (3)
N6A −0.36772 (18) 0.78285 (13) 0.08081 (11) 0.0370 (3)
O61A −0.3268 (2) 0.67315 (13) 0.11180 (13) 0.0662 (5)
O62A −0.47823 (18) 0.80553 (14) 0.03359 (11) 0.0557 (4)
C1B 0.29112 (18) 0.24867 (15) 0.41703 (11) 0.0270 (3)
O1B 0.19899 (13) 0.35763 (11) 0.44572 (8) 0.0353 (3)
C2B 0.23173 (18) 0.13264 (16) 0.38650 (12) 0.0299 (3)
N2B 0.05928 (16) 0.14283 (15) 0.37308 (12) 0.0404 (3)
O21B −0.00902 (16) 0.04406 (15) 0.38274 (15) 0.0690 (5)
O22B −0.00859 (16) 0.24821 (14) 0.34659 (12) 0.0576 (4)
C3B 0.32794 (19) 0.00995 (16) 0.36639 (12) 0.0315 (3)
H3B 0.279 (2) −0.0637 (19) 0.3481 (14) 0.040 (5)*
C4B 0.49633 (19) −0.00422 (15) 0.37139 (11) 0.0301 (3)
N4B 0.59846 (18) −0.13327 (14) 0.34997 (11) 0.0389 (3)
O41B 0.74541 (16) −0.14586 (14) 0.35957 (12) 0.0558 (4)
O42B 0.53534 (19) −0.22459 (14) 0.32327 (14) 0.0652 (4)
C5B 0.56874 (19) 0.10308 (16) 0.39575 (11) 0.0303 (3)
H5B 0.681 (2) 0.0949 (17) 0.3956 (13) 0.033 (4)*
C6B 0.46974 (18) 0.22393 (16) 0.41531 (11) 0.0295 (3)
N6B 0.55497 (17) 0.33587 (15) 0.43280 (12) 0.0414 (4)
O61B 0.5170 (2) 0.44149 (14) 0.39533 (12) 0.0590 (4)
O62B 0.66595 (18) 0.31520 (16) 0.47993 (14) 0.0699 (5)
N11 0.16733 (15) 0.57565 (13) 0.16779 (10) 0.0291 (3)
H11 0.114 (2) 0.6554 (18) 0.1567 (13) 0.030 (4)*
C11A 0.2986 (3) 0.5363 (2) 0.07575 (15) 0.0456 (5)
H11C 0.346 (3) 0.450 (3) 0.0848 (19) 0.071 (7)*
H11B 0.243 (3) 0.539 (2) 0.024 (2) 0.068 (7)*
H11A 0.372 (3) 0.600 (3) 0.068 (2) 0.079 (8)*
C12 0.2433 (2) 0.58588 (17) 0.25660 (13) 0.0348 (4)
H12B 0.300 (2) 0.498 (2) 0.2664 (14) 0.041 (5)*
H12A 0.322 (3) 0.647 (2) 0.2416 (16) 0.053 (6)*
C13 0.1088 (2) 0.63356 (18) 0.34660 (13) 0.0387 (4)
H13B 0.054 (2) 0.7194 (19) 0.3366 (13) 0.035 (5)*
H13A 0.157 (2) 0.636 (2) 0.4042 (16) 0.049 (5)*
N14 −0.02066 (18) 0.54247 (15) 0.36518 (11) 0.0361 (3)
H14B −0.100 (3) 0.576 (2) 0.4161 (16) 0.044 (5)*
H14A 0.031 (3) 0.460 (2) 0.3783 (15) 0.048 (5)*
C15 −0.0961 (2) 0.52998 (19) 0.27659 (13) 0.0364 (4)
H15B −0.153 (2) 0.616 (2) 0.2644 (15) 0.042 (5)*
H15A −0.171 (3) 0.471 (2) 0.2906 (15) 0.047 (5)*
C16 0.0398 (2) 0.48330 (17) 0.18685 (13) 0.0338 (3)
H16B 0.098 (2) 0.3954 (19) 0.1948 (14) 0.036 (5)*
H16A −0.012 (3) 0.481 (2) 0.1283 (17) 0.056 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0339 (8) 0.0278 (8) 0.0286 (8) 0.0045 (6) −0.0116 (6) 0.0010 (6)
O1A 0.0507 (7) 0.0349 (6) 0.0543 (8) 0.0144 (5) −0.0239 (6) −0.0092 (6)
C2A 0.0257 (7) 0.0361 (8) 0.0310 (8) −0.0019 (6) −0.0081 (6) 0.0030 (6)
N2A 0.0275 (7) 0.0450 (8) 0.0462 (9) −0.0034 (6) −0.0097 (6) −0.0010 (7)
O21A 0.0355 (7) 0.0566 (9) 0.0925 (12) −0.0161 (6) −0.0166 (7) 0.0067 (8)
O22A 0.0422 (7) 0.0511 (8) 0.0820 (11) 0.0035 (6) −0.0320 (7) 0.0070 (7)
C3A 0.0342 (8) 0.0290 (8) 0.0324 (8) −0.0068 (6) −0.0088 (6) 0.0024 (6)
C4A 0.0311 (7) 0.0244 (7) 0.0284 (8) 0.0010 (6) −0.0072 (6) 0.0014 (6)
N4A 0.0435 (8) 0.0274 (7) 0.0324 (7) 0.0029 (6) −0.0099 (6) −0.0003 (5)
O41A 0.0381 (7) 0.0415 (7) 0.0571 (8) 0.0112 (5) −0.0094 (6) −0.0042 (6)
O42A 0.0646 (9) 0.0267 (6) 0.0792 (11) −0.0052 (6) −0.0174 (8) −0.0055 (6)
C5A 0.0280 (7) 0.0307 (8) 0.0287 (8) −0.0012 (6) −0.0102 (6) 0.0027 (6)
C6A 0.0357 (8) 0.0260 (7) 0.0289 (8) −0.0037 (6) −0.0130 (6) 0.0011 (6)
N6A 0.0453 (8) 0.0307 (7) 0.0387 (8) −0.0068 (6) −0.0163 (6) −0.0020 (6)
O61A 0.0923 (11) 0.0293 (7) 0.0920 (12) −0.0132 (7) −0.0508 (10) 0.0087 (7)
O62A 0.0606 (8) 0.0531 (8) 0.0682 (9) −0.0181 (7) −0.0407 (8) 0.0056 (7)
C1B 0.0256 (7) 0.0315 (8) 0.0221 (7) 0.0001 (6) −0.0036 (5) −0.0009 (6)
O1B 0.0338 (6) 0.0350 (6) 0.0336 (6) 0.0054 (5) −0.0061 (5) −0.0059 (5)
C2B 0.0227 (7) 0.0359 (8) 0.0308 (8) −0.0032 (6) −0.0055 (6) 0.0006 (6)
N2B 0.0265 (7) 0.0434 (8) 0.0523 (9) −0.0043 (6) −0.0108 (6) −0.0032 (7)
O21B 0.0357 (7) 0.0529 (9) 0.1243 (15) −0.0158 (6) −0.0236 (8) 0.0045 (9)
O22B 0.0400 (7) 0.0510 (8) 0.0875 (11) 0.0010 (6) −0.0315 (7) 0.0076 (7)
C3B 0.0312 (8) 0.0310 (8) 0.0331 (8) −0.0061 (6) −0.0070 (6) −0.0003 (6)
C4B 0.0288 (7) 0.0312 (8) 0.0278 (8) 0.0027 (6) −0.0050 (6) −0.0014 (6)
N4B 0.0388 (8) 0.0355 (8) 0.0370 (8) 0.0050 (6) −0.0031 (6) −0.0023 (6)
O41B 0.0365 (7) 0.0511 (8) 0.0751 (10) 0.0147 (6) −0.0155 (6) −0.0074 (7)
O42B 0.0597 (9) 0.0352 (7) 0.0992 (13) 0.0017 (6) −0.0186 (8) −0.0210 (8)
C5B 0.0227 (7) 0.0402 (9) 0.0264 (8) 0.0003 (6) −0.0053 (6) −0.0026 (6)
C6B 0.0273 (7) 0.0349 (8) 0.0264 (7) −0.0051 (6) −0.0056 (6) −0.0037 (6)
N6B 0.0318 (7) 0.0453 (9) 0.0462 (9) −0.0065 (6) −0.0052 (6) −0.0166 (7)
O61B 0.0718 (9) 0.0448 (8) 0.0644 (9) −0.0235 (7) −0.0133 (8) 0.0015 (7)
O62B 0.0495 (8) 0.0688 (10) 0.0995 (13) 0.0001 (7) −0.0399 (9) −0.0343 (9)
N11 0.0286 (6) 0.0248 (6) 0.0310 (7) 0.0034 (5) −0.0047 (5) −0.0002 (5)
C11A 0.0464 (10) 0.0415 (11) 0.0383 (10) 0.0077 (9) 0.0055 (8) 0.0011 (8)
C12 0.0280 (8) 0.0350 (9) 0.0423 (9) −0.0012 (7) −0.0122 (7) −0.0009 (7)
C13 0.0431 (9) 0.0357 (9) 0.0386 (9) 0.0020 (7) −0.0169 (8) −0.0092 (7)
N14 0.0343 (7) 0.0384 (8) 0.0289 (7) 0.0082 (6) −0.0010 (6) −0.0024 (6)
C15 0.0271 (8) 0.0411 (9) 0.0403 (9) −0.0024 (7) −0.0073 (7) 0.0020 (7)
C16 0.0376 (8) 0.0309 (8) 0.0342 (9) −0.0054 (7) −0.0104 (7) −0.0033 (7)

Geometric parameters (Å, °)

C1A—O1A 1.2494 (18) N4B—O42B 1.220 (2)
C1A—C2A 1.443 (2) N4B—O41B 1.2271 (19)
C1A—C6A 1.445 (2) C5B—C6B 1.365 (2)
C2A—C3A 1.372 (2) C5B—H5B 0.913 (18)
C2A—N2A 1.4470 (19) C6B—N6B 1.466 (2)
N2A—O21A 1.2233 (19) N6B—O62B 1.215 (2)
N2A—O22A 1.2283 (19) N6B—O61B 1.217 (2)
C3A—C4A 1.378 (2) N11—C16 1.490 (2)
C3A—H3A 0.93 (2) N11—C12 1.490 (2)
C4A—C5A 1.391 (2) N11—C11A 1.495 (2)
C4A—N4A 1.4445 (19) N11—H11 0.892 (18)
N4A—O42A 1.2267 (19) C11A—H11C 0.93 (3)
N4A—O41A 1.2291 (18) C11A—H11B 0.92 (3)
C5A—C6A 1.369 (2) C11A—H11A 0.94 (3)
C5A—H5A 0.917 (19) C12—C13 1.505 (2)
C6A—N6A 1.4605 (19) C12—H12B 0.97 (2)
N6A—O62A 1.2144 (18) C12—H12A 0.96 (2)
N6A—O61A 1.2190 (19) C13—N14 1.493 (2)
C1B—O1B 1.2612 (18) C13—H13B 0.946 (19)
C1B—C2B 1.437 (2) C13—H13A 0.96 (2)
C1B—C6B 1.445 (2) N14—C15 1.488 (2)
C2B—C3B 1.372 (2) N14—H14B 0.88 (2)
C2B—N2B 1.4521 (19) N14—H14A 0.92 (2)
N2B—O21B 1.215 (2) C15—C16 1.507 (2)
N2B—O22B 1.2238 (19) C15—H15B 0.96 (2)
C3B—C4B 1.383 (2) C15—H15A 0.92 (2)
C3B—H3B 0.959 (19) C16—H16B 0.965 (18)
C4B—C5B 1.390 (2) C16—H16A 0.99 (2)
C4B—N4B 1.446 (2)
O1A—C1A—C2A 124.85 (14) C5B—C6B—C1B 124.82 (14)
O1A—C1A—C6A 123.25 (15) C5B—C6B—N6B 116.40 (13)
C2A—C1A—C6A 111.84 (13) C1B—C6B—N6B 118.76 (13)
C3A—C2A—C1A 124.24 (13) O62B—N6B—O61B 123.87 (16)
C3A—C2A—N2A 116.59 (14) O62B—N6B—C6B 117.52 (16)
C1A—C2A—N2A 119.16 (13) O61B—N6B—C6B 118.50 (14)
O21A—N2A—O22A 122.68 (14) C16—N11—C12 110.14 (13)
O21A—N2A—C2A 118.32 (14) C16—N11—C11A 111.97 (14)
O22A—N2A—C2A 118.91 (14) C12—N11—C11A 111.84 (14)
C2A—C3A—C4A 119.12 (15) C16—N11—H11 107.5 (11)
C2A—C3A—H3A 118.9 (13) C12—N11—H11 109.0 (11)
C4A—C3A—H3A 121.8 (13) C11A—N11—H11 106.2 (11)
C3A—C4A—C5A 121.40 (14) N11—C11A—H11C 106.1 (16)
C3A—C4A—N4A 119.07 (14) N11—C11A—H11B 106.3 (15)
C5A—C4A—N4A 119.46 (13) H11C—C11A—H11B 110 (2)
O42A—N4A—O41A 123.36 (14) N11—C11A—H11A 106.9 (17)
O42A—N4A—C4A 118.51 (14) H11C—C11A—H11A 116 (2)
O41A—N4A—C4A 118.12 (14) H11B—C11A—H11A 111 (2)
C6A—C5A—C4A 118.49 (14) N11—C12—C13 110.48 (13)
C6A—C5A—H5A 119.2 (11) N11—C12—H12B 106.7 (11)
C4A—C5A—H5A 122.3 (11) C13—C12—H12B 110.9 (11)
C5A—C6A—C1A 124.74 (14) N11—C12—H12A 107.2 (13)
C5A—C6A—N6A 116.96 (13) C13—C12—H12A 110.5 (13)
C1A—C6A—N6A 118.30 (13) H12B—C12—H12A 110.9 (16)
O62A—N6A—O61A 122.69 (14) N14—C13—C12 110.29 (14)
O62A—N6A—C6A 118.18 (13) N14—C13—H13B 107.8 (11)
O61A—N6A—C6A 119.09 (13) C12—C13—H13B 110.5 (11)
O1B—C1B—C2B 124.76 (13) N14—C13—H13A 108.6 (12)
O1B—C1B—C6B 123.54 (14) C12—C13—H13A 110.3 (12)
C2B—C1B—C6B 111.65 (13) H13B—C13—H13A 109.3 (16)
C3B—C2B—C1B 124.68 (13) C15—N14—C13 111.26 (14)
C3B—C2B—N2B 115.96 (14) C15—N14—H14B 109.5 (13)
C1B—C2B—N2B 119.34 (13) C13—N14—H14B 107.5 (13)
O21B—N2B—O22B 122.20 (14) C15—N14—H14A 108.4 (13)
O21B—N2B—C2B 118.69 (14) C13—N14—H14A 108.3 (12)
O22B—N2B—C2B 118.96 (14) H14B—N14—H14A 111.8 (18)
C2B—C3B—C4B 118.77 (15) N14—C15—C16 110.20 (13)
C2B—C3B—H3B 120.1 (11) N14—C15—H15B 108.1 (12)
C4B—C3B—H3B 121.1 (11) C16—C15—H15B 109.3 (12)
C3B—C4B—C5B 121.27 (14) N14—C15—H15A 108.0 (13)
C3B—C4B—N4B 119.00 (14) C16—C15—H15A 110.7 (13)
C5B—C4B—N4B 119.73 (13) H15B—C15—H15A 110.4 (16)
O42B—N4B—O41B 122.89 (14) N11—C16—C15 110.70 (13)
O42B—N4B—C4B 118.86 (14) N11—C16—H16B 108.1 (10)
O41B—N4B—C4B 118.24 (14) C15—C16—H16B 112.1 (11)
C6B—C5B—C4B 118.58 (14) N11—C16—H16A 108.9 (13)
C6B—C5B—H5B 120.0 (11) C15—C16—H16A 108.8 (13)
C4B—C5B—H5B 121.3 (11) H16B—C16—H16A 108.2 (16)
O1A—C1A—C2A—C3A 172.55 (16) C3B—C2B—N2B—O21B 27.4 (2)
C6A—C1A—C2A—C3A −4.8 (2) C1B—C2B—N2B—O21B −153.91 (17)
O1A—C1A—C2A—N2A −8.5 (2) C3B—C2B—N2B—O22B −148.21 (17)
C6A—C1A—C2A—N2A 174.11 (14) C1B—C2B—N2B—O22B 30.5 (2)
C3A—C2A—N2A—O21A −26.5 (2) C1B—C2B—C3B—C4B −2.8 (2)
C1A—C2A—N2A—O21A 154.53 (16) N2B—C2B—C3B—C4B 175.80 (14)
C3A—C2A—N2A—O22A 150.03 (16) C2B—C3B—C4B—C5B −0.3 (2)
C1A—C2A—N2A—O22A −29.0 (2) C2B—C3B—C4B—N4B −179.82 (14)
C1A—C2A—C3A—C4A 4.6 (2) C3B—C4B—N4B—O42B 3.6 (2)
N2A—C2A—C3A—C4A −174.39 (14) C5B—C4B—N4B—O42B −175.90 (16)
C2A—C3A—C4A—C5A −1.8 (2) C3B—C4B—N4B—O41B −176.40 (15)
C2A—C3A—C4A—N4A 175.04 (14) C5B—C4B—N4B—O41B 4.1 (2)
C3A—C4A—N4A—O42A 15.4 (2) C3B—C4B—C5B—C6B 0.3 (2)
C5A—C4A—N4A—O42A −167.73 (15) N4B—C4B—C5B—C6B 179.78 (14)
C3A—C4A—N4A—O41A −163.68 (14) C4B—C5B—C6B—C1B 2.9 (2)
C5A—C4A—N4A—O41A 13.2 (2) C4B—C5B—C6B—N6B −175.30 (14)
C3A—C4A—C5A—C6A −0.2 (2) O1B—C1B—C6B—C5B 172.05 (15)
N4A—C4A—C5A—C6A −177.01 (14) C2B—C1B—C6B—C5B −5.4 (2)
C4A—C5A—C6A—C1A −0.4 (2) O1B—C1B—C6B—N6B −9.8 (2)
C4A—C5A—C6A—N6A 179.97 (13) C2B—C1B—C6B—N6B 172.77 (14)
O1A—C1A—C6A—C5A −174.70 (15) C5B—C6B—N6B—O62B −38.6 (2)
C2A—C1A—C6A—C5A 2.7 (2) C1B—C6B—N6B—O62B 143.11 (16)
O1A—C1A—C6A—N6A 4.9 (2) C5B—C6B—N6B—O61B 137.68 (16)
C2A—C1A—C6A—N6A −177.70 (13) C1B—C6B—N6B—O61B −40.6 (2)
C5A—C6A—N6A—O62A 33.9 (2) C16—N11—C12—C13 −58.20 (17)
C1A—C6A—N6A—O62A −145.77 (16) C11A—N11—C12—C13 176.60 (15)
C5A—C6A—N6A—O61A −144.12 (17) N11—C12—C13—N14 57.33 (18)
C1A—C6A—N6A—O61A 36.3 (2) C12—C13—N14—C15 −56.74 (18)
O1B—C1B—C2B—C3B −172.05 (15) C13—N14—C15—C16 56.51 (19)
C6B—C1B—C2B—C3B 5.3 (2) C12—N11—C16—C15 58.16 (17)
O1B—C1B—C2B—N2B 9.4 (2) C11A—N11—C16—C15 −176.72 (14)
C6B—C1B—C2B—N2B −173.25 (14) N14—C15—C16—N11 −57.15 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N11—H11···O1A 0.892 (18) 1.831 (18) 2.6305 (17) 148.1 (16)
N11—H11···O22A 0.892 (18) 2.356 (18) 2.996 (2) 128.8 (14)
N14—H14B···O1Bi 0.88 (2) 1.98 (2) 2.8181 (19) 157.3 (17)
N14—H14A···O1B 0.92 (2) 1.99 (2) 2.7962 (18) 146.4 (18)
N14—H14A···O22B 0.92 (2) 2.28 (2) 2.992 (2) 133.9 (16)
C5A—H5A···O21Aii 0.917 (19) 2.476 (19) 3.383 (2) 170.3 (16)
C5B—H5B···O21Biii 0.913 (18) 2.487 (18) 3.394 (2) 172.3 (15)
C11A—H11C···O41Aiv 0.93 (3) 2.48 (3) 3.345 (2) 155 (2)
C11A—H11A···O62Aiii 0.94 (3) 2.57 (3) 3.496 (3) 168 (2)
C12—H12A···O22A 0.96 (2) 2.56 (2) 3.046 (2) 111.6 (15)
C13—H13A···O62Bv 0.96 (2) 2.46 (2) 3.386 (2) 162.9 (17)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) x+1, y, z; (iv) x+1, y−1, z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2330).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048. [DOI] [PMC free article] [PubMed]
  4. Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766. [DOI] [PubMed]
  5. Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, pp. 16–22. New York: Plenum.
  6. Fun, H.-K., Hemamalini, M., Shetty, D. N., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o714–o715. [DOI] [PMC free article] [PubMed]
  7. Li, H., Hakim Al-arique, Q. N. M., Yathirajan, H. S., Narayana, B. & Ramesha, A. R. (2009). Acta Cryst. E65, o518. [DOI] [PMC free article] [PubMed]
  8. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Siemens (1989). Stereochemical Workstation Operation Manual Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  11. Verdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976–983. [DOI] [PubMed]
  12. Wang, Z.-L. & Jia, L.-H. (2008). Acta Cryst. E64, o665–o666. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001024/fl2330sup1.cif

e-67-0o390-sup1.cif (24.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001024/fl2330Isup2.hkl

e-67-0o390-Isup2.hkl (234.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES