Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):o422–o423. doi: 10.1107/S1600536811001565

5-Hy­droxy-8,8-dimethyl-10-(2-methyl­but-3-en-2-yl)-2H,6H-7,8-dihydro­pyrano[3,2-g]chromene-2,6-dione

Hoong-Kun Fun a,*,, Tawanun Sripisut b, Surat Laphookhieo b, Suchada Chantrapromma c,§
PMCID: PMC3051790  PMID: 21523091

Abstract

In the title compound, C19H20O5, the pyran ring is in an envelope conformation, whereas the benzene and dihydro­pyran ring system is planar with an r.m.s. deviation of 0.0190 (1) Å. The hy­droxy group is coplanar with the attached benzene ring [r.m.s. deviation = 0.0106 (1) Å]. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked into chains along the b axis by weak C—H⋯O inter­actions. These chains are stacked along the a axis. C—H⋯π and weak π–π inter­actions [centroid–centroid distance = 3.7698 (7) Å] are also observed.

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995) and for ring conformations, see: Cremer & Pople (1975). For background to Rutaceae plants, coumarins and their biological activity, see: Kongkathip et al. (2005); Laphookhieo et al. (2009); Maneerat et al. (2010); Huang et al. (1997); Su et al. (2009); Tangyuenyongwatthana et al. (1992); Yenjai et al. (2000).graphic file with name e-67-0o422-scheme1.jpg

Experimental

Crystal data

  • C19H20O5

  • M r = 328.35

  • Monoclinic, Inline graphic

  • a = 10.2239 (2) Å

  • b = 11.3090 (3) Å

  • c = 13.8764 (3) Å

  • β = 93.108 (1)°

  • V = 1602.06 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 100 K

  • 0.43 × 0.43 × 0.33 mm

Data collection

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.721, T max = 0.774

  • 48432 measured reflections

  • 3114 independent reflections

  • 3088 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.147

  • S = 1.29

  • 3114 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.84 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811001565/bq2271sup1.cif

e-67-0o422-sup1.cif (21.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001565/bq2271Isup2.hkl

e-67-0o422-Isup2.hkl (152.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C5/O1ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1O5⋯O4 0.93 (2) 1.66 (2) 2.5361 (14) 155 (2)
C9—H9B⋯O3i 0.97 2.36 3.2621 (17) 155
C16—H16B⋯O5ii 0.96 2.59 3.4982 (17) 159
C16—H16C⋯O2 0.96 2.34 2.9441 (16) 121
C15—H15BCg1iii 0.97 (2) 2.83 (2) 3.5908 (16) 136.7 (15)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

SL and TS are grateful to the Thailand Research Fund through the Royal Golden Jubilee PhD Program and Mae Fah Luang University for financial support. SC thanks the Prince of Songkla University for generous support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Rutaceae plants are the rich sources of coumarins and carbazole alkaloids. Many of them have been isolated from several genera of Rutaceae especially from Clausena genus (Laphookhieo et al., 2009; Maneerat et al., 2010; Tangyuenyongwatthana et al., 1992) and some of these compounds show interesting pharmacological activities (Yenjai et al., 2000). During our on-going research on bioactive natural products from Thai medicinal plants, the title pyranocoumarin which known as clausenidin (Huang et al., 1997) was isolated from the roots of C. excavata which were collected from Suratthani province in the southern part of Thailand. Previous reports have found that clausenidin displayed anti-HIV-1 activity in a syncytial assay (Kongkathip et al., 2005) and cytotoxicity against four human cancer cell lines (A549, MCF7, KB and KB-VIN) (Su et al., 2009). We report herein the crystal structure of the title pyranocoumarin (I).

Fig. 1 shows that in the structure of (I), the pyran ring (C7–C11/O2) adopts an envelope conformation with the puckering atom C10 having deviation of 0.3279 (15) Å, and puckering parameters Q = 0.4648 (14) Å, θ = 123.32 (17)° and φ = 204.32° (Cremer & Pople, 1975). The benzene and dihydro-pyran ring system (C1–C7/C11-C12/O1) is planar with the r.m.s. 0.0190 (1) Å. The hydroxy group are planarly attached to the benzene ring. The orientation of the 2-methyl-but-3-enyl [C13–C17] side chain with respect to the benzene ring is indicated by the torsion angle of C12–C13–C14–C15 = 138.93 (16)°, indicating a (+)-anticlinal conformation (Fig. 1). Intramolecular O5—H1O5···O4 hydrogen bond (Table 1) generates an S(6) ring motif (Fig. 1 and Table 1) (Bernstein et al., 1995). The bond distances in (I) are within normal ranges (Allen et al., 1987).

The crystal packing of (I) is stabilized by intermolecular C—H···O and C—H···π weak interactions (Table 1). The molecules are linked into chains along the b axis and these chains are stacked along the a axis (Fig. 2 and Table 1). π–π interactions with the Cg1···Cg2 distance = 3.7698 (7) Å (symmetry code: -x, 2-y, 2-z) are observed; Cg1 and Cg2 are the centroids of C1–C5/O1 and C1/C5–C7/C11-C12 rings, respectively.

Experimental

The roots of C. excavata (3.98 Kg) were successively extracted with CH2Cl2 over the period of 3 days at room temperature to provide the crude CH2Cl2 extract which was subjected to quick column chromatography (QCC) over silica gel eluted with a gradient of hexane-EtOAc (100% hexane to 100% EtOAc) to provide twenty-one fractions (A-U). Fraction G (10.68 g) was further separated by QCC with a gradient of 10% EtOAc-hexane to 100% EtOAc to give seven subfractions (G1-G7). Subfraction G4 (1.82 g) was subjected to repeated column chromatography using 6% EtOAc-hexane to yield the yellow solid of the title compound (30.0 mg). Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from CH2Cl2/CH3OH (4:1 v/v) by the slow evaporation of the solvent at room temperature after several days, Mp. 410-411 K (decomposition).

Refinement

Hydrogen atoms attached to C15 and hydroxyl H atom were located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with (C—H) = 0.93 for aromatic and CH, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.51 Å from H16C and the deepest hole is located at 1.43 Å from C11.

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. O—H···O hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

The crystal packing of (I) viewed along the c axis, showing chains along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C19H20O5 F(000) = 696
Mr = 328.35 Dx = 1.361 Mg m3
Monoclinic, P21/c Melting point = 410–411 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54178 Å
a = 10.2239 (2) Å Cell parameters from 3114 reflections
b = 11.3090 (3) Å θ = 5.8–72.0°
c = 13.8764 (3) Å µ = 0.81 mm1
β = 93.108 (1)° T = 100 K
V = 1602.06 (6) Å3 Block, yellow
Z = 4 0.43 × 0.43 × 0.33 mm

Data collection

Bruker APEX DUO CCD area-detector diffractometer 3114 independent reflections
Radiation source: sealed tube 3088 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 72.0°, θmin = 5.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→12
Tmin = 0.721, Tmax = 0.774 k = −12→13
48432 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.085P)2 + 0.4129P] where P = (Fo2 + 2Fc2)/3
S = 1.29 (Δ/σ)max = 0.001
3114 reflections Δρmax = 0.71 e Å3
234 parameters Δρmin = −0.84 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.041 (2)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.24205 (9) 1.16069 (8) 0.99936 (7) 0.0182 (3)
O2 0.25452 (9) 0.76187 (8) 0.90044 (6) 0.0178 (3)
O3 0.25906 (11) 1.34713 (9) 1.04469 (8) 0.0251 (3)
O4 0.01977 (10) 0.66004 (9) 1.11316 (7) 0.0228 (3)
O5 0.01904 (10) 0.87092 (9) 1.17530 (7) 0.0216 (3)
H1O5 0.010 (2) 0.789 (2) 1.1695 (16) 0.046 (6)*
C1 0.20676 (12) 1.04507 (12) 1.01109 (9) 0.0155 (3)
C2 0.21353 (13) 1.25150 (12) 1.06206 (10) 0.0188 (3)
C3 0.13341 (13) 1.22145 (13) 1.14119 (10) 0.0201 (3)
H3A 0.1083 1.2802 1.1833 0.024*
C4 0.09493 (13) 1.10932 (12) 1.15431 (10) 0.0186 (3)
H4A 0.0440 1.0912 1.2059 0.022*
C5 0.13116 (12) 1.01699 (12) 1.09000 (9) 0.0164 (3)
C6 0.09425 (12) 0.89887 (12) 1.10224 (9) 0.0165 (3)
C7 0.13559 (12) 0.81207 (12) 1.03860 (9) 0.0162 (3)
C8 0.09306 (12) 0.69006 (12) 1.04907 (10) 0.0180 (3)
C9 0.13851 (13) 0.60284 (12) 0.97689 (10) 0.0194 (3)
H9A 0.0724 0.5956 0.9244 0.023*
H9B 0.1490 0.5260 1.0074 0.023*
C10 0.26803 (14) 0.63988 (11) 0.93635 (10) 0.0183 (3)
C11 0.21402 (12) 0.84528 (12) 0.96178 (9) 0.0154 (3)
C12 0.25049 (12) 0.96284 (12) 0.94385 (9) 0.0154 (3)
C13 0.33249 (13) 0.98950 (12) 0.85555 (9) 0.0176 (3)
C14 0.45881 (13) 0.91792 (13) 0.86498 (10) 0.0211 (3)
H14A 0.5002 0.9134 0.9262 0.025*
C15 0.51505 (15) 0.86207 (14) 0.79547 (11) 0.0258 (4)
H15A 0.473 (2) 0.8581 (18) 0.7301 (16) 0.038 (5)*
H15B 0.598 (2) 0.8228 (18) 0.8085 (14) 0.034 (5)*
C16 0.24997 (13) 0.95973 (13) 0.76241 (9) 0.0204 (3)
H16A 0.2977 0.9812 0.7073 0.031*
H16B 0.1691 1.0029 0.7614 0.031*
H16C 0.2318 0.8765 0.7605 0.031*
C17 0.37739 (16) 1.11907 (13) 0.84519 (11) 0.0273 (4)
H17A 0.4288 1.1263 0.7896 0.041*
H17B 0.4293 1.1419 0.9019 0.041*
H17C 0.3020 1.1695 0.8377 0.041*
C18 0.29707 (16) 0.56754 (13) 0.84802 (11) 0.0252 (3)
H18A 0.3768 0.5951 0.8222 0.038*
H18B 0.2263 0.5759 0.8001 0.038*
H18C 0.3065 0.4858 0.8658 0.038*
C19 0.38167 (14) 0.63524 (12) 1.01187 (10) 0.0213 (3)
H19A 0.4603 0.6615 0.9837 0.032*
H19B 0.3932 0.5555 1.0345 0.032*
H19C 0.3631 0.6857 1.0650 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0233 (5) 0.0130 (5) 0.0188 (5) −0.0003 (4) 0.0045 (4) −0.0003 (3)
O2 0.0241 (5) 0.0126 (5) 0.0169 (5) 0.0009 (4) 0.0044 (4) −0.0005 (3)
O3 0.0334 (6) 0.0144 (5) 0.0278 (6) −0.0006 (4) 0.0039 (4) −0.0006 (4)
O4 0.0219 (5) 0.0208 (5) 0.0261 (5) −0.0027 (4) 0.0059 (4) 0.0046 (4)
O5 0.0235 (5) 0.0213 (6) 0.0208 (5) −0.0009 (4) 0.0088 (4) 0.0018 (4)
C1 0.0153 (6) 0.0140 (6) 0.0171 (6) 0.0002 (5) −0.0007 (5) 0.0011 (5)
C2 0.0205 (7) 0.0156 (7) 0.0201 (7) 0.0024 (5) −0.0015 (5) −0.0020 (5)
C3 0.0209 (7) 0.0203 (7) 0.0191 (7) 0.0042 (5) 0.0011 (5) −0.0048 (5)
C4 0.0165 (6) 0.0225 (7) 0.0168 (6) 0.0024 (5) 0.0018 (5) −0.0015 (5)
C5 0.0156 (6) 0.0183 (7) 0.0153 (6) 0.0013 (5) 0.0010 (5) 0.0002 (5)
C6 0.0139 (6) 0.0210 (7) 0.0147 (6) 0.0006 (5) 0.0012 (5) 0.0019 (5)
C7 0.0154 (6) 0.0164 (7) 0.0166 (6) 0.0001 (5) 0.0002 (5) 0.0019 (5)
C8 0.0150 (6) 0.0183 (7) 0.0204 (7) 0.0003 (5) −0.0015 (5) 0.0033 (5)
C9 0.0200 (7) 0.0138 (6) 0.0242 (7) −0.0017 (5) 0.0011 (5) 0.0014 (5)
C10 0.0227 (7) 0.0120 (6) 0.0206 (7) 0.0008 (5) 0.0028 (5) 0.0009 (5)
C11 0.0152 (6) 0.0161 (7) 0.0148 (6) 0.0014 (5) −0.0004 (5) −0.0009 (5)
C12 0.0159 (6) 0.0157 (7) 0.0147 (6) 0.0003 (5) 0.0013 (5) 0.0007 (5)
C13 0.0203 (7) 0.0170 (7) 0.0160 (6) 0.0000 (5) 0.0052 (5) −0.0003 (5)
C14 0.0180 (7) 0.0267 (7) 0.0187 (7) −0.0006 (5) 0.0011 (5) 0.0007 (5)
C15 0.0217 (7) 0.0305 (8) 0.0250 (8) 0.0060 (6) 0.0003 (6) −0.0025 (6)
C16 0.0217 (7) 0.0233 (7) 0.0165 (7) 0.0032 (5) 0.0030 (5) 0.0028 (5)
C17 0.0376 (9) 0.0201 (7) 0.0257 (7) −0.0052 (6) 0.0160 (6) −0.0010 (6)
C18 0.0338 (8) 0.0174 (7) 0.0248 (7) 0.0017 (6) 0.0048 (6) −0.0037 (5)
C19 0.0204 (7) 0.0199 (7) 0.0237 (7) 0.0020 (5) 0.0028 (5) 0.0017 (5)

Geometric parameters (Å, °)

O1—C1 1.3685 (16) C10—C18 1.5164 (19)
O1—C2 1.3872 (16) C10—C19 1.5227 (19)
O2—C11 1.3505 (16) C11—C12 1.4065 (19)
O2—C10 1.4708 (15) C12—C13 1.5513 (17)
O3—C2 1.2069 (18) C13—C14 1.5238 (19)
O4—C8 1.2410 (17) C13—C16 1.5419 (18)
O5—C6 1.3430 (16) C13—C17 1.5445 (18)
O5—H1O5 0.93 (2) C14—C15 1.311 (2)
C1—C12 1.4073 (19) C14—H14A 0.9300
C1—C5 1.4103 (18) C15—H15A 0.98 (2)
C2—C3 1.4456 (19) C15—H15B 0.97 (2)
C3—C4 1.343 (2) C16—H16A 0.9600
C3—H3A 0.9300 C16—H16B 0.9600
C4—C5 1.4352 (18) C16—H16C 0.9600
C4—H4A 0.9300 C17—H17A 0.9600
C5—C6 1.4009 (19) C17—H17B 0.9600
C6—C7 1.4009 (19) C17—H17C 0.9600
C7—C11 1.4189 (18) C18—H18A 0.9600
C7—C8 1.4564 (18) C18—H18B 0.9600
C8—C9 1.4975 (19) C18—H18C 0.9600
C9—C10 1.5253 (19) C19—H19A 0.9600
C9—H9A 0.9700 C19—H19B 0.9600
C9—H9B 0.9700 C19—H19C 0.9600
C1—O1—C2 124.55 (11) C12—C11—C7 123.30 (12)
C11—O2—C10 117.90 (10) C11—C12—C1 114.24 (12)
C6—O5—H1O5 103.0 (14) C11—C12—C13 118.90 (11)
O1—C1—C12 117.21 (12) C1—C12—C13 126.86 (12)
O1—C1—C5 117.81 (12) C14—C13—C16 112.25 (11)
C12—C1—C5 124.97 (13) C14—C13—C17 104.91 (11)
O3—C2—O1 116.21 (12) C16—C13—C17 106.32 (11)
O3—C2—C3 127.09 (13) C14—C13—C12 108.70 (11)
O1—C2—C3 116.70 (12) C16—C13—C12 108.97 (11)
C4—C3—C2 120.48 (12) C17—C13—C12 115.72 (11)
C4—C3—H3A 119.8 C15—C14—C13 126.59 (13)
C2—C3—H3A 119.8 C15—C14—H14A 116.7
C3—C4—C5 121.02 (13) C13—C14—H14A 116.7
C3—C4—H4A 119.5 C14—C15—H15A 120.7 (12)
C5—C4—H4A 119.5 C14—C15—H15B 120.0 (12)
C6—C5—C1 118.12 (12) H15A—C15—H15B 119.3 (17)
C6—C5—C4 122.55 (12) C13—C16—H16A 109.5
C1—C5—C4 119.32 (12) C13—C16—H16B 109.5
O5—C6—C7 121.03 (12) H16A—C16—H16B 109.5
O5—C6—C5 119.01 (12) C13—C16—H16C 109.5
C7—C6—C5 119.95 (12) H16A—C16—H16C 109.5
C6—C7—C11 119.36 (12) H16B—C16—H16C 109.5
C6—C7—C8 119.95 (12) C13—C17—H17A 109.5
C11—C7—C8 120.64 (12) C13—C17—H17B 109.5
O4—C8—C7 121.72 (13) H17A—C17—H17B 109.5
O4—C8—C9 121.36 (12) C13—C17—H17C 109.5
C7—C8—C9 116.89 (12) H17A—C17—H17C 109.5
C8—C9—C10 111.89 (11) H17B—C17—H17C 109.5
C8—C9—H9A 109.2 C10—C18—H18A 109.5
C10—C9—H9A 109.2 C10—C18—H18B 109.5
C8—C9—H9B 109.2 H18A—C18—H18B 109.5
C10—C9—H9B 109.2 C10—C18—H18C 109.5
H9A—C9—H9B 107.9 H18A—C18—H18C 109.5
O2—C10—C18 104.54 (11) H18B—C18—H18C 109.5
O2—C10—C19 108.64 (11) C10—C19—H19A 109.5
C18—C10—C19 111.23 (12) C10—C19—H19B 109.5
O2—C10—C9 108.37 (11) H19A—C19—H19B 109.5
C18—C10—C9 111.21 (12) C10—C19—H19C 109.5
C19—C10—C9 112.46 (11) H19A—C19—H19C 109.5
O2—C11—C12 117.10 (12) H19B—C19—H19C 109.5
O2—C11—C7 119.58 (12)
C2—O1—C1—C12 −176.20 (11) C11—O2—C10—C19 −68.22 (14)
C2—O1—C1—C5 2.95 (18) C11—O2—C10—C9 54.25 (14)
C1—O1—C2—O3 175.33 (12) C8—C9—C10—O2 −52.54 (14)
C1—O1—C2—C3 −4.33 (18) C8—C9—C10—C18 −166.91 (11)
O3—C2—C3—C4 −176.61 (14) C8—C9—C10—C19 67.58 (14)
O1—C2—C3—C4 3.01 (19) C10—O2—C11—C12 154.89 (11)
C2—C3—C4—C5 −0.5 (2) C10—O2—C11—C7 −26.57 (16)
O1—C1—C5—C6 179.76 (11) C6—C7—C11—O2 179.76 (11)
C12—C1—C5—C6 −1.2 (2) C8—C7—C11—O2 −3.05 (18)
O1—C1—C5—C4 −0.19 (18) C6—C7—C11—C12 −1.79 (19)
C12—C1—C5—C4 178.89 (12) C8—C7—C11—C12 175.40 (11)
C3—C4—C5—C6 179.13 (12) O2—C11—C12—C1 −179.17 (10)
C3—C4—C5—C1 −0.9 (2) C7—C11—C12—C1 2.35 (19)
C1—C5—C6—O5 −178.07 (11) O2—C11—C12—C13 0.61 (17)
C4—C5—C6—O5 1.87 (19) C7—C11—C12—C13 −177.87 (11)
C1—C5—C6—C7 1.80 (19) O1—C1—C12—C11 178.22 (10)
C4—C5—C6—C7 −178.26 (11) C5—C1—C12—C11 −0.87 (19)
O5—C6—C7—C11 179.45 (11) O1—C1—C12—C13 −1.54 (19)
C5—C6—C7—C11 −0.42 (19) C5—C1—C12—C13 179.37 (12)
O5—C6—C7—C8 2.24 (19) C11—C12—C13—C14 −57.89 (15)
C5—C6—C7—C8 −177.63 (11) C1—C12—C13—C14 121.86 (14)
C6—C7—C8—O4 0.37 (19) C11—C12—C13—C16 64.73 (15)
C11—C7—C8—O4 −176.81 (12) C1—C12—C13—C16 −115.52 (14)
C6—C7—C8—C9 178.52 (11) C11—C12—C13—C17 −175.57 (12)
C11—C7—C8—C9 1.35 (18) C1—C12—C13—C17 4.2 (2)
O4—C8—C9—C10 −154.56 (12) C16—C13—C14—C15 18.3 (2)
C7—C8—C9—C10 27.28 (16) C17—C13—C14—C15 −96.71 (17)
C11—O2—C10—C18 172.93 (11) C12—C13—C14—C15 138.93 (16)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C5/O1ring.
D—H···A D—H H···A D···A D—H···A
O5—H1O5···O4 0.93 (2) 1.66 (2) 2.5361 (14) 155 (2)
C9—H9B···O3i 0.97 2.36 3.2621 (17) 155
C16—H16B···O5ii 0.96 2.59 3.4982 (17) 159
C16—H16C···O2 0.96 2.34 2.9441 (16) 121
C15—H15B···Cg1iii 0.97 (2) 2.83 (2) 3.5908 (16) 136.7 (15)

Symmetry codes: (i) x, y−1, z; (ii) −x, −y+2, −z+2; (iii) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2271).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Huang, S.-C., Wu, P.-L. & Wu, T.-S. (1997). Phytochemistry, 44, 179–181.
  6. Kongkathip, B., Kongkathip, N., Sunthitikawinsakul, A., Napaswat, C. & Yoosook, C. (2005). Phytother. Res. 19, 728–731. [DOI] [PubMed]
  7. Laphookhieo, S., Sripisut, T., Prawat, U. & Karalai, C. (2009). Heterocycles, 78, 2115–2119.
  8. Maneerat, W., Prawat, U., Saewan, N. & Laphookhieo, S. (2010). J. Braz. Chem. Soc 21, 665–668.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Su, C.-R., Yeh, S.-F., Liu, C.-M., Damu, A.-G., Kuo, T.-H., Chaing, P.-C., Bastow, K. F., Lee, K.-H. & Wu, T.-S. (2009). Bioorg. Med. Chem 17, 6137–6143. [DOI] [PubMed]
  12. Tangyuenyongwatthana, P., Pummangura, S. & Thanyavuthi, D. (1992). Songklanakarin J. Sci. Technol 14, 157–162.
  13. Yenjai, C., Sripontan, S., Sriprajun, P., Kittakoop, P., Jintasirikul, A., Tanticharoen, M. & Thebtaranonth, Y. (2000). Planta Med 66, 277–279. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811001565/bq2271sup1.cif

e-67-0o422-sup1.cif (21.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001565/bq2271Isup2.hkl

e-67-0o422-Isup2.hkl (152.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES