Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 22;67(Pt 2):o465. doi: 10.1107/S1600536811002236

Ethyl 2-(4-nitro­benzamido)­benzoate, a non-merohedral twin

Sohail Saeed a,*, Naghmana Rashid a, Jerry P Jasinski b, Ray J Butcher c
PMCID: PMC3051796  PMID: 21523125

Abstract

In the title compound, C16H14N2O5, a non-merohedral twin, the dihedral angle between the mean planes of the two benzene rings is 4.0 (9)°. The ethyl group is disordered [0.643 (14) and 0.357 (14) occupancy]. The nitro group is twisted by 16.4 (4)° from the mean plane of the benzene ring and the mean plane of the carbonyl group is twisted from the mean planes of the two benzene rings by 4.5 (0) and 4.7 (9)°. An intra­molecular N—H⋯O hydrogen bond occurs. The crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen-bond inter­actions.

Related literature

For applications of amides and amide derivatives in the pharmaceutical industry, see: Banihashemi & Firoozifar (2003); Mallakpour & Kowsari (2005); Saxena et al. (2003); Wang et al. (2008). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-67-0o465-scheme1.jpg

Experimental

Crystal data

  • C16H14N2O5

  • M r = 314.29

  • Triclinic, Inline graphic

  • a = 6.9802 (3) Å

  • b = 9.3570 (4) Å

  • c = 12.5779 (5) Å

  • α = 102.833 (4)°

  • β = 94.296 (4)°

  • γ = 107.567 (4)°

  • V = 754.68 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.88 mm−1

  • T = 295 K

  • 0.52 × 0.48 × 0.24 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.825, T max = 1.000

  • 10410 measured reflections

  • 10410 independent reflections

  • 9282 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.157

  • S = 1.04

  • 10410 reflections

  • 218 parameters

  • 25 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811002236/hg2769sup1.cif

e-67-0o465-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002236/hg2769Isup2.hkl

e-67-0o465-Isup2.hkl (509KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.86 1.95 2.6638 (9) 139
C2—H2A⋯O3i 0.93 2.50 3.4069 (11) 166
C10—H10A⋯O2ii 0.93 2.56 3.3716 (14) 146
C12—H12A⋯O1iii 0.93 2.50 3.2554 (12) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

The development of heat-resistant, high performance polymers in the past decades has been quite dramatic and has drawn the attention of many polymer scientists all over the world. Wholly aromatic polymers such as polyamides and polyimides have already been noted for high temperature resistance and excellent physico-mechanical properties. Amides and amide derivatives have extensive applications in the pharmaceutical industry (Wang et al., 2008) and in polymer chemistry (Saxena et al., 2003; Banihashemi & Firoozifar, 2003; Mallakpour et al., 2005).

In the title compound, C16H14N2O5, a nonmerohedral twin, the dihedral angle between the mean planes of the two benzene rings is 4.0 (9)° (Fig. 1). The ethyl group is disordered (0.643 (14) & 0.357 (14) occupancy). The nitro group is twisted by 16.4 (4)° from the mean plane of the benzene ring and the mean plane of the carbonyl group is twisted from the mean planes of the two benzene rings by 4.5 (0)° and 4.7 (9)°, respectively. Bond distances and angles are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by intramolecular N—H···O, and weak C—H···O intermolecular hydrogen bond interactions (Fig. 2).

Experimental

A mixture of 4-nitrobenzoyl chloride (0.01 mol) and ethyl-p-aminobenzoate (0.01 mol) was refluxed in anhydrous acetone (70 ml) for three hours. After cooling to room temperature, the mixture was poured into acidified cold water. The resulting yellow solid product was filtered and washed with cold acetone. Single crystals of the title compound suitable for single-crystal x-ray analysis were obtained by recrystallization of the yellow solid from ethyl acetate.

Refinement

This structure has been refined as a nonmerohedral twin and the nonmerohedral twin matrix has been identified. The ethyl group carbon atoms are disordered with occupancies 0.643 (14) (C15A & C16A) and 0.357 (14) (C15B & C16B), respectively. All of the other H atoms were placed in their calculated positions and then refined using the riding model with Atom–H lengths of 0.93Å (CH), 0.97Å (CH2), or 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.19–1.20 (CH), 1.20 (CH2), 1.49 (CH3) or 1.20 (NH) times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of C16H14N2O5, showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate N—H···O intramolecular hydrogen bonding. C15A & C16A represent the major component (0.643 (14)) of the disordered ethyl group.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the b axis. Dashed lined indicate N—H···O intramolecular hydrogen bonding.

Crystal data

C16H14N2O5 Z = 2
Mr = 314.29 F(000) = 328
Triclinic, P1 Dx = 1.383 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54178 Å
a = 6.9802 (3) Å Cell parameters from 4228 reflections
b = 9.3570 (4) Å θ = 5.1–73.9°
c = 12.5779 (5) Å µ = 0.88 mm1
α = 102.833 (4)° T = 295 K
β = 94.296 (4)° Block, yellow
γ = 107.567 (4)° 0.52 × 0.48 × 0.24 mm
V = 754.68 (6) Å3

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 10410 measured reflections
Radiation source: Enhance (Cu) X-ray Source 10410 independent reflections
graphite 9282 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1 θmax = 74.5°, θmin = 5.1°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −11→11
Tmin = 0.825, Tmax = 1.000 l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0935P)2 + 0.0632P] where P = (Fo2 + 2Fc2)/3
10410 reflections (Δ/σ)max < 0.001
218 parameters Δρmax = 0.20 e Å3
25 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 −0.18667 (13) 0.04273 (9) 0.01289 (7) 0.1014 (3)
O2 0.02489 (16) 0.25940 (11) 0.00650 (7) 0.1088 (3)
O3 0.12371 (18) 0.20254 (8) 0.56742 (8) 0.1132 (3)
O4 0.40086 (11) 0.74605 (7) 0.55727 (5) 0.06973 (19)
O5 0.52758 (10) 0.93554 (6) 0.71099 (5) 0.06630 (18)
N1 −0.05477 (14) 0.16683 (10) 0.05611 (8) 0.0793 (3)
N2 0.24927 (11) 0.45878 (8) 0.57997 (6) 0.06052 (19)
H2 0.2733 0.5241 0.5401 0.073*
C1 0.11370 (12) 0.27848 (8) 0.40099 (8) 0.0583 (2)
C2 0.01013 (15) 0.12590 (9) 0.34180 (9) 0.0697 (3)
H2A −0.0232 0.0483 0.3789 0.084*
C3 −0.04350 (15) 0.08854 (10) 0.22924 (9) 0.0725 (3)
H3A −0.1131 −0.0134 0.1900 0.087*
C4 0.00737 (13) 0.20403 (10) 0.17595 (8) 0.0637 (2)
C5 0.11309 (14) 0.35587 (10) 0.23110 (8) 0.0653 (2)
H5A 0.1488 0.4323 0.1930 0.078*
C6 0.16450 (14) 0.39178 (9) 0.34375 (8) 0.0634 (2)
H6A 0.2347 0.4940 0.3822 0.076*
C7 0.16219 (14) 0.30877 (9) 0.52350 (8) 0.0657 (2)
C8 0.30613 (12) 0.52356 (9) 0.69344 (7) 0.0574 (2)
C9 0.26962 (16) 0.43559 (12) 0.77040 (9) 0.0753 (3)
H9A 0.2068 0.3287 0.7464 0.090*
C10 0.32558 (18) 0.50539 (14) 0.88137 (10) 0.0870 (3)
H10A 0.2980 0.4450 0.9315 0.104*
C11 0.42132 (18) 0.66243 (14) 0.91963 (9) 0.0817 (3)
H11A 0.4610 0.7079 0.9949 0.098*
C12 0.45786 (14) 0.75151 (11) 0.84562 (8) 0.0656 (2)
H12A 0.5215 0.8581 0.8714 0.079*
C13 0.40165 (12) 0.68549 (9) 0.73274 (7) 0.0541 (2)
C14 0.44109 (12) 0.78829 (9) 0.65684 (7) 0.0544 (2)
C15A 0.5896 (13) 1.0482 (9) 0.6489 (8) 0.0698 (11) 0.643 (14)
H15A 0.4716 1.0511 0.6046 0.084* 0.643 (14)
H15B 0.6805 1.0202 0.5997 0.084* 0.643 (14)
C16A 0.6954 (13) 1.2037 (5) 0.7264 (5) 0.0928 (12) 0.643 (14)
H16A 0.7493 1.2776 0.6850 0.139* 0.643 (14)
H16B 0.8043 1.1978 0.7747 0.139* 0.643 (14)
H16C 0.6005 1.2359 0.7693 0.139* 0.643 (14)
C15B 0.550 (2) 1.0505 (18) 0.6437 (16) 0.0698 (11) 0.357 (14)
H15C 0.6508 1.0448 0.5953 0.084* 0.357 (14)
H15D 0.4216 1.0358 0.6001 0.084* 0.357 (14)
C16B 0.6185 (17) 1.1998 (11) 0.7309 (9) 0.0928 (12) 0.357 (14)
H16D 0.6536 1.2847 0.6970 0.139* 0.357 (14)
H16E 0.7352 1.2045 0.7788 0.139* 0.357 (14)
H16F 0.5108 1.2062 0.7729 0.139* 0.357 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0958 (5) 0.0834 (5) 0.0877 (5) 0.0130 (4) −0.0132 (4) −0.0212 (4)
O2 0.1291 (7) 0.1025 (6) 0.0697 (5) 0.0111 (5) 0.0051 (5) 0.0127 (5)
O3 0.1821 (9) 0.0505 (4) 0.0854 (5) 0.0055 (4) 0.0053 (5) 0.0245 (4)
O4 0.0973 (5) 0.0501 (3) 0.0505 (3) 0.0120 (3) 0.0030 (3) 0.0100 (2)
O5 0.0821 (4) 0.0482 (3) 0.0557 (3) 0.0088 (3) 0.0018 (3) 0.0079 (3)
N1 0.0766 (5) 0.0723 (5) 0.0714 (5) 0.0212 (4) 0.0004 (4) −0.0088 (4)
N2 0.0725 (4) 0.0454 (3) 0.0590 (4) 0.0133 (3) 0.0046 (3) 0.0141 (3)
C1 0.0556 (4) 0.0421 (4) 0.0717 (5) 0.0131 (3) 0.0071 (4) 0.0085 (4)
C2 0.0723 (6) 0.0429 (4) 0.0849 (7) 0.0114 (4) 0.0083 (5) 0.0103 (4)
C3 0.0699 (5) 0.0444 (4) 0.0846 (7) 0.0095 (4) 0.0019 (5) −0.0045 (4)
C4 0.0564 (5) 0.0568 (5) 0.0677 (5) 0.0178 (4) 0.0045 (4) −0.0015 (4)
C5 0.0690 (5) 0.0524 (4) 0.0646 (5) 0.0122 (4) 0.0055 (4) 0.0075 (4)
C6 0.0684 (5) 0.0415 (4) 0.0670 (5) 0.0073 (3) 0.0039 (4) 0.0048 (3)
C7 0.0742 (5) 0.0443 (4) 0.0740 (6) 0.0128 (4) 0.0091 (4) 0.0159 (4)
C8 0.0570 (4) 0.0561 (4) 0.0608 (5) 0.0187 (3) 0.0059 (4) 0.0190 (4)
C9 0.0854 (6) 0.0668 (5) 0.0742 (6) 0.0189 (5) 0.0047 (5) 0.0303 (5)
C10 0.1013 (8) 0.0948 (8) 0.0730 (7) 0.0277 (6) 0.0080 (5) 0.0454 (6)
C11 0.0959 (7) 0.0933 (7) 0.0550 (5) 0.0294 (6) −0.0004 (5) 0.0236 (5)
C12 0.0678 (5) 0.0696 (5) 0.0558 (5) 0.0210 (4) 0.0006 (4) 0.0137 (4)
C13 0.0517 (4) 0.0554 (4) 0.0550 (4) 0.0185 (3) 0.0043 (3) 0.0137 (3)
C14 0.0551 (4) 0.0501 (4) 0.0532 (4) 0.0144 (3) 0.0038 (3) 0.0092 (3)
C15A 0.084 (3) 0.0519 (5) 0.0668 (10) 0.0134 (15) 0.0017 (19) 0.0182 (6)
C16A 0.114 (3) 0.0528 (6) 0.0912 (10) 0.0040 (19) 0.005 (2) 0.0139 (6)
C15B 0.084 (3) 0.0519 (5) 0.0668 (10) 0.0134 (15) 0.0017 (19) 0.0182 (6)
C16B 0.114 (3) 0.0528 (6) 0.0912 (10) 0.0040 (19) 0.005 (2) 0.0139 (6)

Geometric parameters (Å, °)

O1—N1 1.2210 (11) C8—C13 1.4116 (12)
O2—N1 1.2042 (12) C9—C10 1.3735 (16)
O3—C7 1.2126 (11) C9—H9A 0.9300
O4—C14 1.2099 (10) C10—C11 1.3720 (17)
O5—C14 1.3214 (10) C10—H10A 0.9300
O5—C15A 1.431 (12) C11—C12 1.3705 (14)
O5—C15B 1.49 (2) C11—H11A 0.9300
N1—C4 1.4694 (13) C12—C13 1.3899 (13)
N2—C7 1.3497 (11) C12—H12A 0.9300
N2—C8 1.3955 (12) C13—C14 1.4833 (12)
N2—H2 0.8600 C15A—C16A 1.492 (6)
C1—C6 1.3851 (12) C15A—H15A 0.9700
C1—C2 1.3926 (12) C15A—H15B 0.9700
C1—C7 1.4963 (13) C16A—H16A 0.9600
C2—C3 1.3742 (15) C16A—H16B 0.9600
C2—H2A 0.9300 C16A—H16C 0.9600
C3—C4 1.3670 (14) C15B—C16B 1.490 (12)
C3—H3A 0.9300 C15B—H15C 0.9700
C4—C5 1.3773 (12) C15B—H15D 0.9700
C5—C6 1.3743 (14) C16B—H16D 0.9600
C5—H5A 0.9300 C16B—H16E 0.9600
C6—H6A 0.9300 C16B—H16F 0.9600
C8—C9 1.3943 (13)
C14—O5—C15A 118.5 (3) C8—C9—H9A 119.7
C14—O5—C15B 116.1 (5) C11—C10—C9 121.27 (9)
O2—N1—O1 123.88 (10) C11—C10—H10A 119.4
O2—N1—C4 118.86 (8) C9—C10—H10A 119.4
O1—N1—C4 117.26 (10) C12—C11—C10 119.23 (10)
C7—N2—C8 129.57 (7) C12—C11—H11A 120.4
C7—N2—H2 115.2 C10—C11—H11A 120.4
C8—N2—H2 115.2 C11—C12—C13 121.24 (9)
C6—C1—C2 118.55 (9) C11—C12—H12A 119.4
C6—C1—C7 124.29 (7) C13—C12—H12A 119.4
C2—C1—C7 117.16 (8) C12—C13—C8 119.45 (8)
C3—C2—C1 120.87 (9) C12—C13—C14 118.76 (8)
C3—C2—H2A 119.6 C8—C13—C14 121.78 (7)
C1—C2—H2A 119.6 O4—C14—O5 122.72 (7)
C4—C3—C2 118.78 (8) O4—C14—C13 125.49 (7)
C4—C3—H3A 120.6 O5—C14—C13 111.79 (7)
C2—C3—H3A 120.6 O5—C15A—C16A 109.2 (7)
C3—C4—C5 122.19 (9) O5—C15A—H15A 109.8
C3—C4—N1 119.44 (8) C16A—C15A—H15A 109.8
C5—C4—N1 118.36 (9) O5—C15A—H15B 109.8
C6—C5—C4 118.41 (8) C16A—C15A—H15B 109.8
C6—C5—H5A 120.8 H15A—C15A—H15B 108.3
C4—C5—H5A 120.8 C16B—C15B—O5 101.6 (13)
C5—C6—C1 121.18 (8) C16B—C15B—H15C 111.4
C5—C6—H6A 119.4 O5—C15B—H15C 111.4
C1—C6—H6A 119.4 C16B—C15B—H15D 111.4
O3—C7—N2 123.20 (9) O5—C15B—H15D 111.4
O3—C7—C1 120.67 (8) H15C—C15B—H15D 109.3
N2—C7—C1 116.13 (7) C15B—C16B—H16D 109.5
C9—C8—N2 122.86 (8) C15B—C16B—H16E 109.5
C9—C8—C13 118.22 (8) H16D—C16B—H16E 109.5
N2—C8—C13 118.91 (7) C15B—C16B—H16F 109.5
C10—C9—C8 120.58 (9) H16D—C16B—H16F 109.5
C10—C9—H9A 119.7 H16E—C16B—H16F 109.5
C6—C1—C2—C3 −1.00 (14) C13—C8—C9—C10 −0.03 (15)
C7—C1—C2—C3 178.82 (9) C8—C9—C10—C11 −1.01 (18)
C1—C2—C3—C4 0.25 (15) C9—C10—C11—C12 1.36 (18)
C2—C3—C4—C5 1.01 (15) C10—C11—C12—C13 −0.66 (17)
C2—C3—C4—N1 −177.99 (8) C11—C12—C13—C8 −0.36 (14)
O2—N1—C4—C3 −164.54 (10) C11—C12—C13—C14 178.66 (9)
O1—N1—C4—C3 15.94 (13) C9—C8—C13—C12 0.70 (13)
O2—N1—C4—C5 16.42 (14) N2—C8—C13—C12 179.60 (8)
O1—N1—C4—C5 −163.10 (9) C9—C8—C13—C14 −178.29 (8)
C3—C4—C5—C6 −1.46 (15) N2—C8—C13—C14 0.62 (12)
N1—C4—C5—C6 177.55 (8) C15A—O5—C14—O4 −4.7 (4)
C4—C5—C6—C1 0.66 (14) C15B—O5—C14—O4 7.5 (7)
C2—C1—C6—C5 0.53 (14) C15A—O5—C14—C13 175.3 (4)
C7—C1—C6—C5 −179.27 (8) C15B—O5—C14—C13 −172.6 (7)
C8—N2—C7—O3 −1.98 (17) C12—C13—C14—O4 179.61 (8)
C8—N2—C7—C1 177.96 (8) C8—C13—C14—O4 −1.39 (14)
C6—C1—C7—O3 −175.60 (10) C12—C13—C14—O5 −0.37 (11)
C2—C1—C7—O3 4.60 (15) C8—C13—C14—O5 178.63 (7)
C6—C1—C7—N2 4.46 (14) C14—O5—C15A—C16A −176.2 (3)
C2—C1—C7—N2 −175.34 (8) C15B—O5—C15A—C16A 104 (5)
C7—N2—C8—C9 −3.14 (15) C14—O5—C15B—C16B 171.2 (6)
C7—N2—C8—C13 178.00 (8) C15A—O5—C15B—C16B −83 (4)
N2—C8—C9—C10 −178.89 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O4 0.86 1.95 2.6638 (9) 139
C2—H2A···O3i 0.93 2.50 3.4069 (11) 166
C10—H10A···O2ii 0.93 2.56 3.3716 (14) 146
C12—H12A···O1iii 0.93 2.50 3.2554 (12) 138

Symmetry codes: (i) −x, −y, −z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2769).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Banihashemi, A. & Firoozifar, H. (2003). Eur. Polym. J. 39, 281–289.
  3. Mallakpour, S. & Kowsari, E. (2005). Polym. Adv. Technol. 16, 732–737.
  4. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  5. Saxena, A., Rao, V. L., Prabhakaran, P. V. & Ninan, K. N. (2003). Eur. Polym. J. 39, 401–405.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Wang, X.-J., Yang, Q., Liu, F. & You, Q.-D. (2008). Synth. Commun. 38, 1028–1035.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811002236/hg2769sup1.cif

e-67-0o465-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002236/hg2769Isup2.hkl

e-67-0o465-Isup2.hkl (509KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES