Abstract
The DNA sequences for some of the genes involved in the phosphoenolpyruvate-dependent phosphotransferase system (PTS) of Escherichia coli and Salmonella typhimurium have been reported. Comparison of the deduced amino acid sequences of enzyme IIBgi, enzyme IIMtl, and enzyme IIGlc/enzyme IIIGlc, which catalyze the uptake and concomitant phosphorylation of beta-glucosides, mannitol, and glucose, respectively, reveals considerable sequence homology. In particular, the carboxyl-terminal region of enzyme IIBgl is so homologous to the whole of enzyme IIIGlc as to suggest a common function. We postulate that His-547 of enzyme IIBgl receives a phosphate group directly from the cytoplasmic protein HPr and transfers this phosphate to His-306 located in the amino-terminal half of enzyme IIBgl. This latter histidine is conserved in enzyme IIBgl and enzyme IIGlc and, in both proteins, occurs in a region that shows homology with the His-15 region of HPr, which is known to act as the phosphate carrier. An equivalent histidine residue, His-195, is also present in enzyme IIMtl, although here the flanking sequence is different. None of these specified histidine residues is likely to be buried within the membrane.
Full text
PDF![4777](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ea/305188/a624965192d3/pnas00279-0121.png)
![4778](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ea/305188/673ae0a8d338/pnas00279-0122.png)
![4779](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ea/305188/c420fb14bc21/pnas00279-0123.png)
![4780](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ea/305188/b577ff63fc47/pnas00279-0124.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bramley H. F., Kornberg H. L. Nucleotide sequence of bglC, the gene specifying enzymeIIbgl of the PEP:sugar phosphotransferase system in Escherichia coli K12, and overexpression of the gene product. J Gen Microbiol. 1987 Mar;133(3):563–573. doi: 10.1099/00221287-133-3-563. [DOI] [PubMed] [Google Scholar]
- De Reuse H., Roy A., Danchin A. Analysis of the ptsH-ptsI-crr region in Escherichia coli K-12: nucleotide sequence of the ptsH gene. Gene. 1985;35(1-2):199–207. doi: 10.1016/0378-1119(85)90172-6. [DOI] [PubMed] [Google Scholar]
- Dörschug M., Frank R., Kalbitzer H. R., Hengstenberg W., Deutscher J. Phosphoenolpyruvate-dependent phosphorylation site in enzyme IIIglc of the Escherichia coli phosphotransferase system. Eur J Biochem. 1984 Oct 1;144(1):113–119. doi: 10.1111/j.1432-1033.1984.tb08438.x. [DOI] [PubMed] [Google Scholar]
- Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol. 1984 Oct 15;179(1):125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
- Erni B., Zanolari B. Glucose-permease of the bacterial phosphotransferase system. Gene cloning, overproduction, and amino acid sequence of enzyme IIGlc. J Biol Chem. 1986 Dec 15;261(35):16398–16403. [PubMed] [Google Scholar]
- Erni B., Zanolari B. The mannose-permease of the bacterial phosphotransferase system. Gene cloning and purification of the enzyme IIMan/IIIMan complex of Escherichia coli. J Biol Chem. 1985 Dec 15;260(29):15495–15503. [PubMed] [Google Scholar]
- Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
- KUNDIG W., GHOSH S., ROSEMAN S. PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM. Proc Natl Acad Sci U S A. 1964 Oct;52:1067–1074. doi: 10.1073/pnas.52.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee C. A., Saier M. H., Jr Mannitol-specific enzyme II of the bacterial phosphotransferase system. III. The nucleotide sequence of the permease gene. J Biol Chem. 1983 Sep 10;258(17):10761–10767. [PubMed] [Google Scholar]
- Nelson S. O., Schuitema A. R., Benne R., van der Ploeg L. H., Plijter J. S., Aan F., Postma P. W. Molecular cloning, sequencing, and expression of the crr gene: the structural gene for IIIGlc of the bacterial PEP:glucose phosphotransferase system. EMBO J. 1984 Jul;3(7):1587–1593. doi: 10.1002/j.1460-2075.1984.tb02015.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Postma P. W., Lengeler J. W. Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. Microbiol Rev. 1985 Sep;49(3):232–269. doi: 10.1128/mr.49.3.232-269.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saier M. H., Jr, Grenier F. C., Lee C. A., Waygood E. B. Evidence for the evolutionary relatedness of the proteins of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. J Cell Biochem. 1985;27(1):43–56. doi: 10.1002/jcb.240270106. [DOI] [PubMed] [Google Scholar]
- Staden R. An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Res. 1982 May 11;10(9):2951–2961. doi: 10.1093/nar/10.9.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waygood E. B., Erickson E., el Kabbani O. A., Delbaere L. T. Characterization of phosphorylated histidine-containing protein (HPr) of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Biochemistry. 1985 Nov 19;24(24):6938–6945. doi: 10.1021/bi00345a028. [DOI] [PubMed] [Google Scholar]