Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 16;67(Pt 3):o635. doi: 10.1107/S1600536811005058

2,4-Bis(4-but­oxy­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one

P Parthiban a, V Ramkumar b, Yeon Tae Jeong a,*
PMCID: PMC3051922  PMID: 21522389

Abstract

In the title compound, C28H37NO3, a crystallographic mirror plane bis­ects the mol­ecule (one half-mol­ecule in the asymmetric unit). The title compound exists in a twin-chair conformation with an equatorial orientation of the 4-but­oxy­phenyl groups. Both sides of the secondary amino group carry the 4-but­oxy­phenyl groups at an angle of 38.54 (3)° with respect to one another.

Related literature

For the synthesis and biological activity of 3-aza­bicyclo­[3.3.1] nonan-9-ones, see: Jeyaraman & Avila (1981); Barker et al. (2005); Parthiban et al. (2009a , 2010b ,c ); Cox et al. (1985). For related structures, see: Parthiban et al. (2009b ,c , 2010a ); Smith-Verdier et al. (1983); Padegimas & Kovacic (1972). For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).graphic file with name e-67-0o635-scheme1.jpg

Experimental

Crystal data

  • C28H37NO3

  • M r = 435.59

  • Orthorhombic, Inline graphic

  • a = 7.7780 (5) Å

  • b = 31.457 (2) Å

  • c = 9.9560 (6) Å

  • V = 2436.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.35 × 0.28 × 0.25 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.974, T max = 0.981

  • 10360 measured reflections

  • 2991 independent reflections

  • 1900 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.163

  • S = 1.02

  • 2991 reflections

  • 155 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005058/bq2279sup1.cif

e-67-0o635-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005058/bq2279Isup2.hkl

e-67-0o635-Isup2.hkl (146.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the Industrial Technology Development program, which was conducted by the Ministry of Knowledge Economy of the Korean Government. The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

supplementary crystallographic information

Comment

Naturally abundant diterpenoid/norditerpenoid alkaloids contain the 3-azabicyclononane nucleus, which is an important class of pharmacophore due to its broad spectrum of biological activities such as antibacterial, antimycobacterial, antifungal, anticancer, antitussive, anti-inflammatory, sedative, antipyretic and calcium antagonistic activity (Jeyaraman & Avila, 1981; Barker et al., 2005; Parthiban et al., 2009a, 2010b, 2010c). Its biological significant prompted the medicinal chemists to synthesize some structural analogs. Since the stereochemistry plays an important role in biological actions, it is important to establish the stereochemistry of the synthesized bio-potent molecules. For the synthesized title compound, several stereomers are possible with conformations such as chair-chair (Parthiban et al., 2009b, 2009c, 2010a; Cox et al., 1985), chair-boat (Smith-Verdier et al., 1983) and boat-boat (Padegimas & Kovacic, 1972). Hence, the title crystal was undertaken for this study to explore its stereochemistry, unambiguously.

The analysis of torsion angles, asymmetry parameters and puckering parameters calculated for the title compound shows that the piperidine ring adopts a near ideal chair conformation. According to Cremer & Pople, the total puckering amplitude, QT is -0.613 (2) Å and the phase angle θ is 178.67 (19)° (Cremer & Pople, 1975). The smallest displacement asymmetry parameters q2 and q3 are 0.005 (2) and -0.612 (2)°, respectively (Nardelli, 1983). However, the cyclohexane ring deviates from the ideal chair conformation according to Cremer and Pople by QT = 0.573 (2) and θ = 16.1 (2)° (Cremer & Pople, 1975) as well as Nardelli by q2 = 0.158 (2) and q3 = 0.550 (2)° (Nardelli, 1983). Hence, the title compound C28H37NO3, exists in a twin-chair conformation with equatorial orientation of the 4-butoxyphenyl groups on both sides of the secondary amino group on the heterocycle. The aryl groups are orientated at an angle of 38.54 (3)° to each other. The torsion angle of C3—C2—C1—C6 and its mirror image is 176.03 (4)°. The crystal packing is stabilized by weak van der Waals interactions.

Experimental

The title compound was synthesized by a modified and an optimized Mannich condensation in one-pot, using 4-butoxybenzaldehyde (0.1 mol, 17.82 g/17.29 ml), cyclohexanone (0.05 mol, 4.90 g/5.18 ml) and ammonium acetate (0.075 mol, 5.78 g) in a 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude azabicyclic ketone was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. X-ray diffraction quality crystals of the title compound were obtained by slow evaporation from ethanol.

Refinement

The nitrogen H atom was located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement representation of the molecule with 30% probability ellipsoids. Symmetry code: (i) x, -y+1/2, z.

Crystal data

C28H37NO3 F(000) = 944
Mr = 435.59 Dx = 1.188 Mg m3
Orthorhombic, Pnma Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 4431 reflections
a = 7.7780 (5) Å θ = 3.3–26.9°
b = 31.457 (2) Å µ = 0.08 mm1
c = 9.9560 (6) Å T = 298 K
V = 2436.0 (3) Å3 Block, colorless
Z = 4 0.35 × 0.28 × 0.25 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 2991 independent reflections
Radiation source: fine-focus sealed tube 1900 reflections with I > 2σ(I)
graphite Rint = 0.025
phi and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −10→9
Tmin = 0.974, Tmax = 0.981 k = −21→41
10360 measured reflections l = −11→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0606P)2 + 1.2024P] where P = (Fo2 + 2Fc2)/3
2991 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.1848 (3) 0.71161 (6) 0.10972 (19) 0.0455 (5)
H1 1.2239 0.7136 0.2031 0.055*
C2 1.3471 (3) 0.71050 (6) 0.0188 (2) 0.0487 (5)
H2 1.4165 0.6857 0.0432 0.058*
C3 1.4496 (4) 0.7500 0.0466 (3) 0.0494 (7)
C4 1.3130 (3) 0.70937 (6) −0.1338 (2) 0.0523 (5)
H4A 1.4208 0.7044 −0.1801 0.063*
H4B 1.2372 0.6857 −0.1536 0.063*
C5 1.2325 (4) 0.7500 −0.1884 (3) 0.0547 (7)
H5A 1.1109 0.7500 −0.1667 0.066*
H5B 1.2429 0.7500 −0.2855 0.066*
C6 1.0781 (3) 0.67181 (6) 0.09708 (18) 0.0440 (4)
C7 0.9491 (3) 0.66660 (6) 0.0020 (2) 0.0542 (5)
H7 0.9213 0.6891 −0.0544 0.065*
C8 0.8618 (3) 0.62882 (7) −0.0105 (2) 0.0560 (5)
H8 0.7765 0.6260 −0.0753 0.067*
C9 0.9001 (3) 0.59496 (6) 0.0730 (2) 0.0495 (5)
C10 1.0237 (3) 0.59983 (6) 0.1706 (2) 0.0530 (5)
H10 1.0487 0.5775 0.2288 0.064*
C11 1.1108 (3) 0.63806 (6) 0.1821 (2) 0.0500 (5)
H11 1.1936 0.6411 0.2489 0.060*
C12 0.8378 (3) 0.52285 (6) 0.1337 (2) 0.0601 (6)
H12A 0.8154 0.5296 0.2271 0.072*
H12B 0.9567 0.5139 0.1253 0.072*
C13 0.7190 (3) 0.48792 (7) 0.0868 (3) 0.0663 (6)
H13A 0.6013 0.4978 0.0945 0.080*
H13B 0.7413 0.4825 −0.0075 0.080*
C14 0.7355 (4) 0.44743 (7) 0.1615 (3) 0.0752 (7)
H14A 0.7082 0.4523 0.2553 0.090*
H14B 0.8538 0.4377 0.1566 0.090*
C15 0.6187 (4) 0.41318 (8) 0.1070 (3) 0.0882 (9)
H15A 0.5020 0.4231 0.1080 0.132*
H15B 0.6283 0.3882 0.1618 0.132*
H15C 0.6517 0.4065 0.0165 0.132*
N1 1.0856 (3) 0.7500 0.0803 (2) 0.0456 (5)
O1 1.5979 (3) 0.7500 0.0826 (2) 0.0692 (6)
O2 0.8061 (2) 0.55880 (5) 0.05158 (16) 0.0662 (5)
H1N 0.991 (4) 0.7500 0.127 (3) 0.052 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0549 (11) 0.0463 (10) 0.0354 (10) 0.0017 (9) −0.0014 (8) 0.0015 (8)
C2 0.0523 (11) 0.0457 (10) 0.0480 (11) 0.0066 (9) −0.0010 (9) 0.0022 (8)
C3 0.0480 (16) 0.0612 (17) 0.0392 (15) 0.000 −0.0013 (13) 0.000
C4 0.0609 (12) 0.0500 (11) 0.0459 (11) −0.0011 (9) 0.0079 (10) −0.0064 (9)
C5 0.0652 (19) 0.0616 (18) 0.0374 (15) 0.000 −0.0012 (14) 0.000
C6 0.0516 (10) 0.0444 (10) 0.0360 (10) 0.0038 (8) 0.0046 (8) 0.0018 (8)
C7 0.0670 (13) 0.0523 (12) 0.0434 (11) 0.0004 (10) −0.0066 (10) 0.0120 (9)
C8 0.0617 (12) 0.0598 (13) 0.0465 (12) −0.0056 (10) −0.0106 (10) 0.0068 (9)
C9 0.0540 (11) 0.0458 (10) 0.0487 (12) 0.0017 (9) 0.0047 (9) 0.0021 (9)
C10 0.0566 (12) 0.0458 (11) 0.0565 (13) 0.0079 (9) −0.0016 (10) 0.0125 (9)
C11 0.0534 (11) 0.0511 (11) 0.0456 (11) 0.0063 (9) −0.0059 (9) 0.0055 (9)
C12 0.0604 (13) 0.0494 (12) 0.0704 (15) 0.0043 (10) 0.0027 (12) 0.0078 (10)
C13 0.0629 (13) 0.0600 (14) 0.0761 (17) −0.0033 (11) 0.0005 (12) 0.0103 (12)
C14 0.0776 (16) 0.0589 (14) 0.0893 (19) 0.0063 (12) 0.0013 (15) 0.0050 (13)
C15 0.104 (2) 0.0565 (14) 0.104 (2) −0.0075 (14) 0.0128 (18) −0.0072 (14)
N1 0.0490 (13) 0.0441 (12) 0.0439 (13) 0.000 0.0054 (11) 0.000
O1 0.0563 (13) 0.0787 (15) 0.0725 (16) 0.000 −0.0153 (12) 0.000
O2 0.0762 (10) 0.0504 (8) 0.0721 (11) −0.0099 (8) −0.0117 (9) 0.0099 (7)

Geometric parameters (Å, °)

C1—N1 1.463 (2) C9—O2 1.369 (2)
C1—C6 1.507 (3) C9—C10 1.376 (3)
C1—C2 1.554 (3) C10—C11 1.385 (3)
C1—H1 0.9800 C10—H10 0.9300
C2—C3 1.502 (2) C11—H11 0.9300
C2—C4 1.543 (3) C12—O2 1.417 (2)
C2—H2 0.9800 C12—C13 1.510 (3)
C3—O1 1.208 (3) C12—H12A 0.9700
C3—C2i 1.502 (2) C12—H12B 0.9700
C4—C5 1.523 (3) C13—C14 1.481 (3)
C4—H4A 0.9700 C13—H13A 0.9700
C4—H4B 0.9700 C13—H13B 0.9700
C5—C4i 1.523 (3) C14—C15 1.510 (4)
C5—H5A 0.9700 C14—H14A 0.9700
C5—H5B 0.9700 C14—H14B 0.9700
C6—C11 1.382 (3) C15—H15A 0.9600
C6—C7 1.390 (3) C15—H15B 0.9600
C7—C8 1.374 (3) C15—H15C 0.9600
C7—H7 0.9300 N1—C1i 1.463 (2)
C8—C9 1.384 (3) N1—H1N 0.87 (3)
C8—H8 0.9300
N1—C1—C6 112.25 (17) O2—C9—C8 115.55 (18)
N1—C1—C2 109.31 (16) C10—C9—C8 119.29 (19)
C6—C1—C2 112.33 (15) C9—C10—C11 119.77 (18)
N1—C1—H1 107.6 C9—C10—H10 120.1
C6—C1—H1 107.6 C11—C10—H10 120.1
C2—C1—H1 107.6 C6—C11—C10 121.80 (19)
C3—C2—C4 106.96 (18) C6—C11—H11 119.1
C3—C2—C1 107.76 (17) C10—C11—H11 119.1
C4—C2—C1 115.76 (17) O2—C12—C13 107.21 (19)
C3—C2—H2 108.7 O2—C12—H12A 110.3
C4—C2—H2 108.7 C13—C12—H12A 110.3
C1—C2—H2 108.7 O2—C12—H12B 110.3
O1—C3—C2 124.15 (12) C13—C12—H12B 110.3
O1—C3—C2i 124.15 (12) H12A—C12—H12B 108.5
C2—C3—C2i 111.7 (2) C14—C13—C12 114.7 (2)
C5—C4—C2 113.74 (17) C14—C13—H13A 108.6
C5—C4—H4A 108.8 C12—C13—H13A 108.6
C2—C4—H4A 108.8 C14—C13—H13B 108.6
C5—C4—H4B 108.8 C12—C13—H13B 108.6
C2—C4—H4B 108.8 H13A—C13—H13B 107.6
H4A—C4—H4B 107.7 C13—C14—C15 112.4 (2)
C4—C5—C4i 114.1 (2) C13—C14—H14A 109.1
C4—C5—H5A 108.7 C15—C14—H14A 109.1
C4i—C5—H5A 108.7 C13—C14—H14B 109.1
C4—C5—H5B 108.7 C15—C14—H14B 109.1
C4i—C5—H5B 108.7 H14A—C14—H14B 107.9
H5A—C5—H5B 107.6 C14—C15—H15A 109.5
C11—C6—C7 117.37 (18) C14—C15—H15B 109.5
C11—C6—C1 119.07 (18) H15A—C15—H15B 109.5
C7—C6—C1 123.54 (17) C14—C15—H15C 109.5
C8—C7—C6 121.36 (18) H15A—C15—H15C 109.5
C8—C7—H7 119.3 H15B—C15—H15C 109.5
C6—C7—H7 119.3 C1—N1—C1i 111.3 (2)
C7—C8—C9 120.3 (2) C1—N1—H1N 109.8 (9)
C7—C8—H8 119.8 C1i—N1—H1N 109.8 (9)
C9—C8—H8 119.8 C9—O2—C12 118.72 (17)
O2—C9—C10 125.15 (18)
N1—C1—C2—C3 58.7 (2) C1—C6—C7—C8 176.3 (2)
C6—C1—C2—C3 −176.04 (17) C6—C7—C8—C9 0.5 (3)
N1—C1—C2—C4 −61.0 (2) C7—C8—C9—O2 −179.7 (2)
C6—C1—C2—C4 64.3 (2) C7—C8—C9—C10 1.5 (3)
C4—C2—C3—O1 −111.7 (3) O2—C9—C10—C11 179.82 (19)
C1—C2—C3—O1 123.2 (3) C8—C9—C10—C11 −1.6 (3)
C4—C2—C3—C2i 66.0 (3) C7—C6—C11—C10 2.4 (3)
C1—C2—C3—C2i −59.1 (3) C1—C6—C11—C10 −176.39 (18)
C3—C2—C4—C5 −52.9 (2) C9—C10—C11—C6 −0.4 (3)
C1—C2—C4—C5 67.2 (2) O2—C12—C13—C14 179.6 (2)
C2—C4—C5—C4i 43.6 (3) C12—C13—C14—C15 −177.8 (2)
N1—C1—C6—C11 −145.94 (19) C6—C1—N1—C1i 172.73 (12)
C2—C1—C6—C11 90.4 (2) C2—C1—N1—C1i −61.9 (2)
N1—C1—C6—C7 35.4 (3) C10—C9—O2—C12 −1.0 (3)
C2—C1—C6—C7 −88.3 (2) C8—C9—O2—C12 −179.72 (19)
C11—C6—C7—C8 −2.4 (3) C13—C12—O2—C9 −179.18 (19)

Symmetry codes: (i) x, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2279).

References

  1. Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575. [DOI] [PubMed]
  2. Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cox, P. J., McCabe, P. H., Milne, N. J. & Sim, G. A. (1985). J. Chem. Soc. Chem. Commun. pp. 626–628.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.
  7. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  8. Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672–2676.
  9. Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 6981–6985. [DOI] [PubMed]
  10. Parthiban, P., Ramkumar, V., Amirthaganesan, S. & Jeong, Y. T. (2009b). Acta Cryst. E65, o1356. [DOI] [PMC free article] [PubMed]
  11. Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2010a). Acta Cryst. E66, o48–o49. [DOI] [PMC free article] [PubMed]
  12. Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009c). Acta Cryst. E65, o1383. [DOI] [PMC free article] [PubMed]
  13. Parthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79–93.
  14. Parthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010c). Bioorg. Med. Chem. Lett. 20, 1642–1647. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005058/bq2279sup1.cif

e-67-0o635-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005058/bq2279Isup2.hkl

e-67-0o635-Isup2.hkl (146.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES