Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 5;67(Pt 3):m299–m300. doi: 10.1107/S1600536811003588

Bis[2,6-bis­(2-meth­oxy­phen­yl)pyridinium] di-μ-bromido-bis­[dibromidocuprate(II)]

Preeyanuch Sangtrirutnugul a,*, Setsiri Haesuwannakij a, Thanasat Sooksimuang b, Samran Prabpai a, Palangpon Kongsaeree a
PMCID: PMC3051932  PMID: 21522239

Abstract

The title salt, (C19H18NO2)2[Cu2Br6], was obtained from an attempt to synthesize the copper(II) complex of 2,6-bis­(2-meth­oxy­phen­yl)pyridine (L) from a reaction between CuBr2 and one equivalent of L in CH2Cl2 at room temperature. The resulting compound is the salt of the 2,6-bis­(2-meth­oxy­phen­yl)pyridinium cation and 0.5 equivalents of a hexa­bromido­dicuprate(II) dianion. Both meth­oxy groups of the cationic pyridinium moiety are directed towards the N atom of the pyridine ring as a result of intra­molecular N—H⋯O hydrogen bonds. The centrosymmetric hexabromidodicuprate dianion possesses a distorted tetra­hedral geometry at the copper ion. The Cu—Br bond lengths are 2.3385 (7) and 2.3304 (7) Å for the terminal bromides, whereas the bond length between the Cu atom and two bridging bromides is slightly longer [2.4451 (6) Å].

Related literature

The neutral compound 2,6-bis­(2-meth­oxy­phen­yl)pyridine has been previously reported (Silva et al., 1997) and copper(II) complexes of the related ligand 2,6-bis­(2′-hy­droxy­phen­yl)pyridine have also been characterized (Steinhauser et al., 2004).graphic file with name e-67-0m299-scheme1.jpg

Experimental

Crystal data

  • (C19H18NO2)2[Cu2Br6]

  • M r = 1191.23

  • Orthorhombic, Inline graphic

  • a = 11.5329 (1) Å

  • b = 17.0104 (4) Å

  • c = 21.0021 (5) Å

  • V = 4120.18 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.89 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) T min = 0.207, T max = 0.301

  • 28095 measured reflections

  • 4177 independent reflections

  • 3240 reflections with I > 2σ(I)

  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.104

  • S = 1.05

  • 4177 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and maXus (Mackay et al., 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003588/vn2002sup1.cif

e-67-0m299-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003588/vn2002Isup2.hkl

e-67-0m299-Isup2.hkl (842.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H20⋯O1 0.96 1.90 2.625 (4) 131
N1—H20⋯O2 0.96 1.92 2.630 (4) 129

Acknowledgments

The authors acknowledge financial support from the Young Scientist and Technologist Programme (YSTP), the Center of Excellence for Innovation in Chemistry (PERCH-CIC) and the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative.

supplementary crystallographic information

Comment

An attempt to synthesize copper(II) complex of 2,6-bis(2-methoxyphenyl)- pyridine in CH2Cl2 unexpectedly yielded the ionic complex (C9H18NO2).0.5(Cu2Br6). The single crystals of the title compound crystallizes in the orthorhombic unit cell in space group Pbca. Each asymmetric unit cell contains one molecule of 2,6-bis(2-methoxy- phenyl)pyridinium cation and half a molecule of hexabromodicuprate(II). Crystallographic data of the title compound reveals intramolecular N—H···O hydrogen bonds forcing both methoxy groups to be in close proximity to the nitrogen atom of the pyridinium ring (N···O distances of 2.625 (4) and 2.630 (4) Å). The pyridinium and two methoxyphenyl rings are almost co-planar, having the dihedral angles between them of 7.5 (5)° and 15.0 (5)°. In addition, weak intermolecular π-π stacking interactions between pyridine and phenyl moieties of the neighboring molecules with centroid-centroid distances of 3.649 (2) and 3.850 (2) Å are present.

Note that the centroid of the complete dianion coincides with the inversion center. Moreover, the hexabromodicuprate(II) dianion displays a distorted tetrahedral geometry at both copper(II) ions with Cu—Br bond distances of 2.3385 (7) and 2.3304 (7) Å for terminal bromides, and 2.4451 (6) Å for bridging bromides, respectively.

The neutral compound 2,6-bis(2-methoxyphenyl)pyridine has been previously reported (Silva et al., 1997) and their crystals were obtained from an ethyl acetate solution. The published crystal structure reveals that both methoxy groups are on opposite sides of the pyridine nitrogen to avoid the N···O lone pair repulsion. In addition, copper(II) complexes of the related ligand 2,6-bis(2'- hydroxyphenyl)pyridine have previously been synthesized and characterized (Steinhauser et al., 2004).

Experimental

The title compound, (C9H18NO2).0.5(Cu2Br6) (1), was prepared from a reaction of CuBr2 (0.5 mmol) with one equivalent of 2,6-bis(2-methoxyphenyl)pyridine (0.5 mmol) in dichloromethane (30 ml) at room temperature for 3 h. The reaction solution was filtered to remove any unreacted CuBr2. X-ray quality single crystals were obtained from slow evaporation of a dichloromethane solution of 1 at room temperature.

Refinement

Structure refinement was performed using least-squares analysis. All non-H atoms were refined anisotropically whereas all H atoms were placed in calculated positions and treated as riding with C,N—H = 0.96 with Uiso(H) = 1.2 Ueq(C,N), including the methoxy H atoms.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of the title compound (1). Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

(C19H18NO2)2[Cu2Br6] F(000) = 2312
Mr = 1191.23 Dx = 1.920 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 32254 reflections
a = 11.5329 (1) Å θ = 1.0–26.4°
b = 17.0104 (4) Å µ = 6.89 mm1
c = 21.0021 (5) Å T = 298 K
V = 4120.18 (14) Å3 Cube, dark green
Z = 4 0.25 × 0.20 × 0.18 mm

Data collection

Nonius KappaCCD diffractometer 3240 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.075
ω scans θmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) h = −14→14
Tmin = 0.207, Tmax = 0.301 k = −21→21
28095 measured reflections l = −22→26
4177 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0575P)2 + 1.1145P] where P = (Fo2 + 2Fc2)/3
4177 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.55 e Å3

Special details

Experimental. multi-scan from symmetry-related measurements SORTAV (Blessing 1995)
Geometry. All standard uncertainties (except dihedral angles between l.s. planes) are estimated using the full covariance matrix. The standard uncertainties in cell dimensions are are used in calculating the standard uncertainties of bond distances, angles and torsion angles. Angles between l.s. planes have standard uncertainties calculated from atomic positional standard uncertainties; the errors in cell dimensions are not used in this case.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 −0.03538 (4) 0.45904 (3) 0.07154 (2) 0.07414 (19)
Br2 0.14159 (4) 0.30603 (3) 0.00330 (2) 0.05795 (15)
Br3 0.31781 (4) 0.47771 (3) −0.02118 (2) 0.06266 (16)
Cu1 0.12512 (4) 0.44281 (3) −0.00337 (2) 0.05014 (16)
N1 0.3781 (2) 0.23294 (16) 0.25843 (14) 0.0384 (7)
H20 0.3754 0.2367 0.2128 0.046*
O1 0.3184 (2) 0.16507 (18) 0.15107 (14) 0.0609 (8)
O2 0.4577 (2) 0.30722 (17) 0.15766 (13) 0.0571 (7)
C1 0.2958 (3) 0.1857 (2) 0.28504 (18) 0.0438 (9)
C2 0.2983 (4) 0.1787 (3) 0.3505 (2) 0.0613 (11)
H2 0.2431 0.1451 0.3713 0.074*
C3 0.3783 (4) 0.2192 (3) 0.3857 (2) 0.0678 (12)
H3 0.3768 0.2142 0.4312 0.081*
C4 0.4595 (3) 0.2663 (2) 0.35705 (19) 0.0535 (10)
H4 0.5156 0.2941 0.3822 0.064*
C5 0.4602 (3) 0.2733 (2) 0.29171 (17) 0.0388 (8)
C6 0.2118 (3) 0.1434 (2) 0.2446 (2) 0.0461 (9)
C7 0.2227 (3) 0.1327 (2) 0.1792 (2) 0.0500 (10)
C8 0.1406 (4) 0.0902 (3) 0.1446 (3) 0.0658 (12)
H8 0.1496 0.0835 0.0995 0.079*
C9 0.0476 (4) 0.0583 (3) 0.1753 (3) 0.0768 (16)
H9 −0.0088 0.0294 0.1512 0.092*
C10 0.0341 (4) 0.0672 (3) 0.2395 (3) 0.0751 (15)
H10 −0.0311 0.0436 0.2606 0.090*
C11 0.1135 (3) 0.1099 (3) 0.2742 (2) 0.0614 (12)
H11 0.1027 0.1172 0.3191 0.074*
C12 0.3434 (4) 0.1461 (3) 0.0865 (2) 0.0712 (13)
H12A 0.4127 0.1730 0.0734 0.085*
H12B 0.2798 0.1624 0.0600 0.085*
H12C 0.3544 0.0904 0.0824 0.085*
C13 0.5483 (3) 0.3218 (2) 0.25782 (18) 0.0421 (8)
C14 0.5472 (3) 0.3374 (2) 0.19176 (19) 0.0445 (9)
C15 0.6341 (4) 0.3824 (2) 0.1641 (2) 0.0569 (11)
H15 0.6337 0.3919 0.1191 0.068*
C16 0.7214 (4) 0.4135 (3) 0.2013 (3) 0.0671 (13)
H16 0.7812 0.4448 0.1821 0.081*
C17 0.7238 (3) 0.4001 (3) 0.2657 (3) 0.0669 (13)
H17 0.7844 0.4222 0.2914 0.080*
C18 0.6385 (3) 0.3547 (2) 0.2938 (2) 0.0550 (10)
H18 0.6421 0.3458 0.3389 0.066*
C19 0.4346 (4) 0.3398 (3) 0.0959 (2) 0.0667 (12)
H19A 0.3696 0.3133 0.0772 0.080*
H19B 0.5016 0.3331 0.0693 0.080*
H19C 0.4174 0.3948 0.1000 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0777 (3) 0.0785 (4) 0.0662 (3) 0.0310 (2) 0.0336 (2) 0.0342 (3)
Br2 0.0599 (3) 0.0497 (3) 0.0643 (3) 0.00570 (18) 0.01288 (19) 0.0059 (2)
Br3 0.0578 (3) 0.0655 (3) 0.0646 (3) −0.00476 (19) 0.0102 (2) 0.0042 (2)
Cu1 0.0534 (3) 0.0490 (3) 0.0480 (3) 0.0075 (2) 0.0124 (2) 0.0064 (2)
N1 0.0394 (16) 0.0413 (16) 0.0344 (16) 0.0002 (12) 0.0000 (12) 0.0008 (13)
O1 0.0662 (18) 0.0702 (19) 0.0464 (18) −0.0161 (15) 0.0017 (13) −0.0131 (16)
O2 0.0643 (17) 0.0674 (19) 0.0395 (16) −0.0155 (14) −0.0049 (12) 0.0100 (14)
C1 0.0392 (19) 0.044 (2) 0.048 (2) 0.0010 (15) 0.0072 (16) 0.0039 (18)
C2 0.062 (3) 0.072 (3) 0.050 (3) −0.013 (2) 0.011 (2) 0.007 (2)
C3 0.079 (3) 0.086 (3) 0.039 (2) −0.009 (3) 0.003 (2) 0.004 (2)
C4 0.060 (2) 0.058 (3) 0.043 (2) −0.0058 (19) −0.0026 (18) −0.005 (2)
C5 0.0388 (19) 0.0363 (19) 0.041 (2) 0.0044 (14) −0.0021 (14) −0.0026 (16)
C6 0.041 (2) 0.036 (2) 0.061 (3) 0.0040 (14) 0.0015 (17) 0.0058 (18)
C7 0.047 (2) 0.042 (2) 0.061 (3) 0.0006 (16) −0.0013 (18) −0.0037 (19)
C8 0.061 (3) 0.055 (3) 0.082 (4) −0.004 (2) −0.014 (2) −0.014 (3)
C9 0.054 (3) 0.052 (3) 0.124 (5) −0.006 (2) −0.020 (3) −0.012 (3)
C10 0.046 (3) 0.054 (3) 0.126 (5) −0.0071 (19) 0.003 (3) 0.011 (3)
C11 0.045 (2) 0.054 (3) 0.085 (3) 0.0010 (19) 0.009 (2) 0.009 (2)
C12 0.089 (3) 0.071 (3) 0.054 (3) 0.001 (2) 0.002 (2) −0.020 (2)
C13 0.0374 (18) 0.039 (2) 0.050 (2) 0.0028 (14) −0.0009 (15) −0.0031 (17)
C14 0.046 (2) 0.040 (2) 0.048 (2) 0.0004 (16) 0.0024 (16) 0.0020 (17)
C15 0.060 (3) 0.052 (3) 0.059 (3) −0.001 (2) 0.014 (2) 0.010 (2)
C16 0.050 (3) 0.052 (3) 0.099 (4) −0.008 (2) 0.012 (2) 0.008 (3)
C17 0.043 (2) 0.062 (3) 0.096 (4) −0.006 (2) −0.005 (2) −0.007 (3)
C18 0.049 (2) 0.054 (2) 0.062 (3) −0.0034 (18) −0.0075 (19) −0.003 (2)
C19 0.081 (3) 0.077 (3) 0.042 (3) −0.005 (2) −0.006 (2) 0.011 (2)

Geometric parameters (Å, °)

Br2—Cu1 2.3385 (7) C2—H2 0.9600
Br3—Cu1 2.3304 (7) C19—H19A 0.9600
Br1—Cu1 2.4451 (6) C19—H19B 0.9600
C5—N1 1.362 (4) C19—H19C 0.9600
C5—C4 1.377 (5) C3—H3 0.9600
C5—C13 1.490 (5) C7—C6 1.392 (6)
O2—C14 1.356 (4) C7—C8 1.396 (6)
O2—C19 1.435 (5) C11—C6 1.413 (5)
O1—C7 1.367 (5) C11—H11 0.9600
O1—C12 1.423 (5) C12—H12A 0.9600
C14—C15 1.389 (5) C12—H12B 0.9600
C14—C13 1.413 (5) C12—H12C 0.9600
N1—C1 1.363 (4) C13—C18 1.402 (5)
N1—H20 0.9600 C8—C9 1.364 (7)
C10—C9 1.365 (8) C8—H8 0.9600
C10—C11 1.377 (7) C18—C17 1.382 (6)
C10—H10 0.9601 C18—H18 0.9600
C4—C3 1.372 (6) C16—C17 1.372 (7)
C4—H4 0.9600 C16—H16 0.9600
C15—C16 1.380 (6) C17—H17 0.9600
C15—H15 0.9598 C9—H9 0.9600
C2—C3 1.368 (6) C1—C6 1.476 (5)
C2—C1 1.380 (6)
Br3—Cu1—Br2 100.69 (2) O1—C7—C8 122.1 (4)
Br3—Cu1—Br1 142.79 (3) C6—C7—C8 121.3 (4)
Br2—Cu1—Br1 97.77 (2) C10—C11—C6 121.0 (5)
N1—C5—C4 117.6 (3) C10—C11—H11 120.1
N1—C5—C13 120.5 (3) C6—C11—H11 118.9
C4—C5—C13 121.8 (3) O1—C12—H12A 109.4
C14—O2—C19 118.1 (3) O1—C12—H12B 109.4
C7—O1—C12 118.9 (3) H12A—C12—H12B 109.5
O2—C14—C15 122.5 (4) O1—C12—H12C 109.6
O2—C14—C13 117.0 (3) H12A—C12—H12C 109.5
C15—C14—C13 120.5 (4) H12B—C12—H12C 109.5
C5—N1—C1 124.8 (3) C18—C13—C14 117.4 (4)
C5—N1—H20 120.1 C18—C13—C5 118.0 (3)
C1—N1—H20 115.2 C14—C13—C5 124.5 (3)
C9—C10—C11 120.3 (5) C9—C8—C7 119.6 (5)
C9—C10—H10 119.9 C9—C8—H8 120.4
C11—C10—H10 119.8 C7—C8—H8 120.1
C3—C4—C5 119.4 (4) C17—C18—C13 121.4 (4)
C3—C4—H4 120.5 C17—C18—H18 118.5
C5—C4—H4 120.1 C13—C18—H18 120.0
C16—C15—C14 120.1 (4) C17—C16—C15 120.6 (4)
C16—C15—H15 119.8 C17—C16—H16 119.5
C14—C15—H15 120.1 C15—C16—H16 119.9
C3—C2—C1 120.6 (4) C16—C17—C18 120.0 (4)
C3—C2—H2 120.0 C16—C17—H17 120.2
C1—C2—H2 119.4 C18—C17—H17 119.9
O2—C19—H19A 109.5 C8—C9—C10 120.9 (5)
O2—C19—H19B 109.4 C8—C9—H9 119.1
H19A—C19—H19B 109.5 C10—C9—H9 120.0
O2—C19—H19C 109.5 N1—C1—C2 116.4 (3)
H19A—C19—H19C 109.5 N1—C1—C6 120.6 (3)
H19B—C19—H19C 109.5 C2—C1—C6 123.0 (3)
C2—C3—C4 121.2 (4) C7—C6—C11 117.0 (4)
C2—C3—H3 118.9 C7—C6—C1 124.9 (3)
C4—C3—H3 120.0 C11—C6—C1 118.1 (4)
O1—C7—C6 116.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H20···O1 0.96 1.90 2.625 (4) 131
N1—H20···O2 0.96 1.92 2.630 (4) 129

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2002).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus Bruker–Nonius, Delft, The Netherlands, MacScience, Yokohama, Japan, and The University of Glasgow, Scotland.
  3. Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
  4. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Silva, A. M. S., Almeida, L. M. P. M., Cavaleiro, J. A. S., Foces-Foces, C., Llamas-Saiz, A. L., Fontenas, C., Jagerovic, N. & Elguero, J. (1997). Tetrahedron, 53, 11645–11658.
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Steinhauser, S., Heinz, U., Sander, J. & Hegetschweiler, K. (2004). Z. Anorg. Allg. Chem. 630, 1829–1838.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003588/vn2002sup1.cif

e-67-0m299-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003588/vn2002Isup2.hkl

e-67-0m299-Isup2.hkl (842.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES