Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 23;67(Pt 3):o688. doi: 10.1107/S1600536811005915

N-[(4-Carbamoylphen­yl)carbamothio­yl]-2,3,4,5-tetra­fluoro­benzamide

Li-Dan Zhang a, Chao Gao b, Xue-Jiao Song c, Luo-Ting Yu b,*
PMCID: PMC3051937  PMID: 21522433

Abstract

In the title compound, C15H9F4N3O2S, the N,N′-disubstituted thio­urea fragment adopts a cis,trans geometry, stabilized by an intra­molecular N—H⋯O hydrogen bond to the carbonyl O atom of the tetra­fluoro­benzoyl group. The central thio­urea group makes dihedral angles of 47.79 (7) and 35.54 (8)° with the two aromatic rings. In the crystal, mol­ecules are linked via N—H⋯O and N—H⋯S hydrogen bonds into two-dimensional polymeric structures parallel to (100). In turn, π–π stacking inter­actions between tetra­fluoro­benzene and benzene units [centroid–centroid distance = 3.996 (10) Å; dihedral angle = 13.60 (8)°] organize these two-dimensional assemblies into a three-dimensional framework.

Related literature

For the biological activity of thio­urea derivatives, see: Zeng et al. (2003); Saeed et al. (2010). For the synthesis of thio­urea derivatives, see: Nosova et al. (2007). For related structures, see: Saeed et al. (2008, 2009).graphic file with name e-67-0o688-scheme1.jpg

Experimental

Crystal data

  • C15H9F4N3O2S

  • M r = 371.31

  • Monoclinic, Inline graphic

  • a = 7.4246 (3) Å

  • b = 20.3368 (7) Å

  • c = 9.8954 (4) Å

  • β = 95.554 (3)°

  • V = 1487.12 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 294 K

  • 0.38 × 0.30 × 0.26 mm

Data collection

  • Oxford Diffraction Xcalibur E CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) T min = 0.860, T max = 1.0

  • 6598 measured reflections

  • 3031 independent reflections

  • 2263 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.103

  • S = 1.13

  • 3031 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811005915/gk2335sup1.cif

e-67-0o688-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005915/gk2335Isup2.hkl

e-67-0o688-Isup2.hkl (148.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯S1i 0.86 2.69 3.4861 (16) 155
N1—H1A⋯O1ii 0.86 2.23 2.8654 (17) 130
N2—H2⋯O2 0.86 1.97 2.6708 (18) 138
N3—H3⋯O1iii 0.86 2.09 2.9062 (18) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

supplementary crystallographic information

Comment

N-(4-Carbamoylphenylcarbamothioyl)-2,3,4,5-tetrafluorobenzamide derivatives are of great importance owing to their interesting biological properties (Zeng et al., 2003; Saeed et al., 2010). The title compound is one of the key intermediates in our synthetic route to antiviral drugs. We report here its crystal structure.

In the title compound, C15H9F4N3O2S, (Fig.1), the cis,trans geometry of the thiourea moiety is stabilized by intramolecular N2—H2···O2 and N3—H3···F1 hydrogen bonds. The central thiourea group makes dihedral angles of 47.79 (7) and 35.54 (8)° with the benzamide unit and the fluorobenzene ring, respectively. A combination of intermolecular π–π stacking interactions, N—H···O, N—H···F and N—H···S hydrogen bonds helps to stabilize the crystal structure (Table 1 and Fig.2).

Experimental

A solution of 0.23 g (3 mmol) of ammonium thiocyanate in 7 ml of acetonitrile was added to a solution of 0.64 g (3 mmol) of 2,3,4,5-tetrafluorobenzoyl chloride in 2.5 ml of toluene. The mixture was heated for 5 min at 40°C and filtered from ammonium chloride, the filtrate was added to a solution of 0.32 g (3 mmol) of 4-aminobenzamide in 5 ml of acetonitrile, the mixture was stirred for 2 h at room temperature and evaporated, and the residue was washed with ethanol and recrystallized from ethanol. Yield 0.91 g (82%). Crystals suitable for X-ray analysis were obtained by slow evaporation from ethyl acetate solution.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and refined using a riding model approximation with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound, showing classical hydrogen bonds of N1—H1A···O1, N2—H2···O2 and N3—H3···O1 as green dashed lines.

Crystal data

C15H9F4N3O2S F(000) = 752
Mr = 371.31 Dx = 1.658 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybc Cell parameters from 3669 reflections
a = 7.4246 (3) Å θ = 3.3–29.2°
b = 20.3368 (7) Å µ = 0.28 mm1
c = 9.8954 (4) Å T = 294 K
β = 95.554 (3)° Block, colourless
V = 1487.12 (9) Å3 0.38 × 0.30 × 0.26 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur E CCD diffractometer 3031 independent reflections
Radiation source: fine-focus sealed tube 2263 reflections with I > 2σ(I)
graphite Rint = 0.014
Detector resolution: 16.0874 pixels mm-1 θmax = 26.4°, θmin = 3.4°
ω scans h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) k = −25→21
Tmin = 0.860, Tmax = 1.0 l = −11→12
6598 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.056P)2] where P = (Fo2 + 2Fc2)/3
3031 reflections (Δ/σ)max < 0.001
226 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.41600 (7) 0.40876 (2) 0.28889 (6) 0.05125 (18)
F 0.98701 (18) 0.10215 (6) −0.07009 (12) 0.0623 (4)
F1 0.66951 (14) 0.21050 (5) 0.34645 (9) 0.0445 (3)
F2 0.72451 (16) 0.08149 (5) 0.33952 (12) 0.0543 (3)
F3 0.87569 (17) 0.02540 (5) 0.12899 (13) 0.0635 (4)
O1 0.66762 (17) 0.73716 (6) 0.33958 (11) 0.0386 (3)
O2 0.91223 (18) 0.33325 (6) 0.09914 (14) 0.0471 (3)
N1 0.7405 (2) 0.75363 (7) 0.12865 (14) 0.0434 (4)
H1B 0.7340 0.7956 0.1382 0.052*
H1A 0.7683 0.7373 0.0532 0.052*
N2 0.7175 (2) 0.43553 (7) 0.17165 (14) 0.0390 (4)
H2 0.8046 0.4200 0.1300 0.047*
N3 0.64026 (19) 0.32604 (7) 0.18763 (14) 0.0356 (3)
H3 0.5580 0.2981 0.2036 0.043*
C1 0.7076 (2) 0.71401 (8) 0.23066 (16) 0.0304 (4)
C2 0.7164 (2) 0.64135 (8) 0.21097 (16) 0.0286 (4)
C3 0.7548 (3) 0.61151 (9) 0.09123 (18) 0.0392 (4)
H3A 0.7823 0.6372 0.0182 0.047*
C4 0.7524 (3) 0.54374 (9) 0.07970 (18) 0.0425 (5)
H4 0.7771 0.5241 −0.0013 0.051*
C5 0.7133 (2) 0.50499 (8) 0.18833 (17) 0.0343 (4)
C6 0.6795 (2) 0.53412 (8) 0.30877 (17) 0.0367 (4)
H6 0.6566 0.5083 0.3828 0.044*
C7 0.6796 (2) 0.60191 (8) 0.31958 (16) 0.0329 (4)
H7 0.6546 0.6214 0.4007 0.039*
C8 0.6006 (2) 0.39170 (8) 0.21371 (17) 0.0345 (4)
C9 0.7920 (2) 0.30012 (9) 0.14025 (17) 0.0338 (4)
C10 0.8043 (2) 0.22623 (8) 0.14010 (16) 0.0315 (4)
C11 0.8887 (2) 0.19686 (9) 0.03581 (18) 0.0369 (4)
H11 0.9315 0.2228 −0.0316 0.044*
C12 0.9089 (2) 0.13022 (9) 0.03208 (19) 0.0410 (4)
C13 0.8521 (3) 0.09051 (8) 0.1325 (2) 0.0414 (5)
C14 0.7735 (2) 0.11852 (8) 0.23825 (18) 0.0369 (4)
C15 0.7476 (2) 0.18583 (8) 0.24020 (16) 0.0326 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0543 (3) 0.0289 (3) 0.0750 (4) 0.0028 (2) 0.0295 (3) −0.0031 (2)
F 0.0717 (9) 0.0532 (7) 0.0638 (8) 0.0202 (6) 0.0162 (6) −0.0171 (6)
F1 0.0550 (7) 0.0402 (6) 0.0394 (6) 0.0026 (5) 0.0093 (5) 0.0001 (5)
F2 0.0617 (8) 0.0366 (6) 0.0643 (7) −0.0022 (5) 0.0052 (6) 0.0184 (5)
F3 0.0688 (8) 0.0237 (6) 0.0975 (10) 0.0083 (5) 0.0051 (7) −0.0067 (6)
O1 0.0568 (8) 0.0293 (7) 0.0305 (6) 0.0036 (6) 0.0085 (6) −0.0027 (5)
O2 0.0453 (8) 0.0312 (7) 0.0677 (9) −0.0037 (6) 0.0199 (7) 0.0007 (6)
N1 0.0702 (11) 0.0250 (8) 0.0374 (8) −0.0013 (7) 0.0174 (8) 0.0019 (7)
N2 0.0480 (9) 0.0228 (7) 0.0488 (9) −0.0001 (7) 0.0181 (7) −0.0001 (7)
N3 0.0392 (8) 0.0215 (7) 0.0481 (9) 0.0008 (6) 0.0145 (7) 0.0009 (6)
C1 0.0333 (9) 0.0274 (9) 0.0303 (9) 0.0002 (7) 0.0031 (7) 0.0003 (7)
C2 0.0310 (9) 0.0245 (9) 0.0303 (8) 0.0002 (7) 0.0028 (7) 0.0005 (7)
C3 0.0559 (12) 0.0280 (9) 0.0359 (10) −0.0041 (8) 0.0166 (9) 0.0013 (8)
C4 0.0614 (12) 0.0293 (10) 0.0398 (10) −0.0009 (9) 0.0206 (9) −0.0057 (8)
C5 0.0409 (10) 0.0213 (9) 0.0416 (10) −0.0004 (7) 0.0075 (8) 0.0002 (7)
C6 0.0509 (11) 0.0273 (9) 0.0319 (9) −0.0022 (8) 0.0037 (8) 0.0056 (7)
C7 0.0432 (10) 0.0288 (9) 0.0269 (8) −0.0004 (7) 0.0042 (7) −0.0007 (7)
C8 0.0434 (10) 0.0233 (9) 0.0371 (9) 0.0023 (7) 0.0060 (8) 0.0010 (7)
C9 0.0368 (10) 0.0271 (9) 0.0377 (9) 0.0016 (7) 0.0045 (7) 0.0004 (7)
C10 0.0310 (9) 0.0252 (9) 0.0380 (9) 0.0018 (7) 0.0015 (7) −0.0003 (7)
C11 0.0342 (9) 0.0341 (10) 0.0426 (10) 0.0040 (8) 0.0043 (8) 0.0013 (8)
C12 0.0387 (10) 0.0364 (10) 0.0475 (11) 0.0104 (8) 0.0022 (8) −0.0113 (9)
C13 0.0389 (10) 0.0221 (9) 0.0612 (12) 0.0040 (8) −0.0061 (9) −0.0046 (9)
C14 0.0350 (10) 0.0275 (9) 0.0469 (10) −0.0027 (7) −0.0032 (8) 0.0060 (8)
C15 0.0296 (9) 0.0313 (9) 0.0366 (9) 0.0018 (7) 0.0022 (7) −0.0011 (8)

Geometric parameters (Å, °)

S1—C8 1.6583 (18) C2—C7 1.389 (2)
F—C12 1.341 (2) C3—H3A 0.9300
F1—C15 1.3458 (18) C3—C4 1.383 (2)
F2—C14 1.332 (2) C4—H4 0.9300
F3—C13 1.3365 (18) C4—C5 1.386 (2)
O1—C1 1.2383 (18) C5—C6 1.376 (2)
O2—C9 1.219 (2) C6—H6 0.9300
N1—H1B 0.8600 C6—C7 1.383 (2)
N1—H1A 0.8600 C7—H7 0.9300
N1—C1 1.333 (2) C9—C10 1.505 (2)
N2—H2 0.8600 C10—C11 1.393 (2)
N2—C5 1.423 (2) C10—C15 1.384 (2)
N2—C8 1.338 (2) C11—H11 0.9300
N3—H3 0.8600 C11—C12 1.364 (2)
N3—C8 1.397 (2) C12—C13 1.378 (3)
N3—C9 1.367 (2) C13—C14 1.370 (3)
C1—C2 1.493 (2) C14—C15 1.383 (2)
C2—C3 1.385 (2)
F—C12—C11 119.99 (18) C4—C3—H3A 119.8
F—C12—C13 118.62 (16) C4—C5—N2 117.77 (15)
F1—C15—C10 121.45 (14) C5—N2—H2 116.5
F1—C15—C14 116.81 (15) C5—C4—H4 119.8
F2—C14—C13 120.47 (15) C5—C6—H6 120.1
F2—C14—C15 120.04 (16) C5—C6—C7 119.84 (15)
F3—C13—C12 120.80 (18) C6—C5—N2 122.40 (15)
F3—C13—C14 119.87 (18) C6—C5—C4 119.77 (15)
O1—C1—N1 120.43 (15) C6—C7—C2 120.96 (15)
O1—C1—C2 120.47 (14) C6—C7—H7 119.5
O2—C9—N3 123.76 (16) C7—C2—C1 117.15 (14)
O2—C9—C10 120.32 (15) C7—C6—H6 120.1
N1—C1—C2 119.09 (14) C8—N2—H2 116.5
H1B—N1—H1A 120.0 C8—N2—C5 127.09 (15)
N2—C8—S1 126.10 (13) C8—N3—H3 115.6
N2—C8—N3 115.14 (15) C9—N3—H3 115.6
N3—C8—S1 118.75 (12) C9—N3—C8 128.85 (14)
N3—C9—C10 115.92 (14) C10—C11—H11 119.9
C1—N1—H1B 120.0 C11—C10—C9 117.41 (15)
C1—N1—H1A 120.0 C11—C12—C13 121.38 (17)
C2—C3—H3A 119.8 C12—C11—C10 120.29 (17)
C2—C7—H7 119.5 C12—C11—H11 119.9
C3—C2—C1 124.10 (15) C13—C14—C15 119.49 (16)
C3—C2—C7 118.74 (15) C14—C13—C12 119.32 (15)
C3—C4—H4 119.8 C14—C15—C10 121.71 (15)
C3—C4—C5 120.31 (16) C15—C10—C9 124.72 (15)
C4—C3—C2 120.34 (16) C15—C10—C11 117.75 (15)
F—C12—C13—F3 0.6 (3) C5—N2—C8—N3 −178.02 (15)
F—C12—C13—C14 179.40 (16) C5—C6—C7—C2 −1.1 (3)
F2—C14—C15—F1 −1.0 (2) C7—C2—C3—C4 1.4 (3)
F2—C14—C15—C10 177.00 (15) C8—N2—C5—C4 −138.63 (19)
F3—C13—C14—F2 1.7 (3) C8—N2—C5—C6 44.1 (3)
F3—C13—C14—C15 −179.20 (15) C8—N3—C9—O2 −8.1 (3)
O1—C1—C2—C3 178.02 (16) C8—N3—C9—C10 172.27 (16)
O1—C1—C2—C7 −0.5 (2) C9—N3—C8—S1 −172.62 (14)
O2—C9—C10—C11 −33.5 (2) C9—N3—C8—N2 8.7 (3)
O2—C9—C10—C15 142.48 (18) C9—C10—C11—C12 178.10 (15)
N1—C1—C2—C3 −0.9 (3) C9—C10—C15—F1 2.2 (2)
N1—C1—C2—C7 −179.44 (15) C9—C10—C15—C14 −175.74 (15)
N2—C5—C6—C7 179.11 (16) C10—C11—C12—F 178.65 (16)
N3—C9—C10—C11 146.16 (16) C10—C11—C12—C13 −2.0 (3)
N3—C9—C10—C15 −37.9 (2) C11—C10—C15—F1 178.11 (14)
C1—C2—C3—C4 −177.14 (16) C11—C10—C15—C14 0.2 (2)
C1—C2—C7—C6 178.11 (16) C11—C12—C13—F3 −178.74 (16)
C2—C3—C4—C5 −0.6 (3) C11—C12—C13—C14 0.1 (3)
C3—C2—C7—C6 −0.5 (3) C12—C13—C14—F2 −177.14 (15)
C3—C4—C5—N2 −178.38 (17) C12—C13—C14—C15 2.0 (3)
C3—C4—C5—C6 −1.0 (3) C13—C14—C15—F1 179.87 (15)
C4—C5—C6—C7 1.9 (3) C13—C14—C15—C10 −2.1 (3)
C5—N2—C8—S1 3.4 (3) C15—C10—C11—C12 1.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1B···S1i 0.86 2.69 3.4861 (16) 155
N1—H1A···O1ii 0.86 2.23 2.8654 (17) 130
N2—H2···O2 0.86 1.97 2.6708 (18) 138
N3—H3···F1 0.86 2.37 2.8234 (17) 113
N3—H3···O1iii 0.86 2.09 2.9062 (18) 157

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2335).

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  3. Nosova, E. V., Lipunova, G. N., Laeva, A. A., Sidorova, L. P. & Charushin, V. N. (2007). Russ. J. Org. Chem. 43, 68–76.
  4. Oxford Diffraction (2006). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  5. Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008). Acta Cryst. E64, o1485. [DOI] [PMC free article] [PubMed]
  6. Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331. [DOI] [PubMed]
  7. Saeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870–o1871. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Zeng, R. S., Zou, J. P., Zhi, S. J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657–1659. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811005915/gk2335sup1.cif

e-67-0o688-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005915/gk2335Isup2.hkl

e-67-0o688-Isup2.hkl (148.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES