Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 9;67(Pt 3):o584. doi: 10.1107/S1600536811003898

Monocrotophos: dimethyl (E)-1-methyl-2-(methyl­carbamo­yl)ethenyl phosphate

Sanghun Cheon a, Tae Ho Kim a,*, Ki-Min Park a, Jineun Kim a,*
PMCID: PMC3051939  PMID: 21522345

Abstract

In the title compound, C7H14NO5P, the phosphate group displays rotational disorder of three O atoms with an occupancy ratio of 0.832 (6):0.167 (6). The dihedral angle between the acryl­amide group and PO2 plane of the phosphate group is 75.69 (7)°. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the molecules.

Related literature

For the toxicity and insecticidal properties of the title compound, see: Dureja (1989); Chakravarthi et al. (2007). For related structures, see: Osman & El-Samahy (2007).graphic file with name e-67-0o584-scheme1.jpg

Experimental

Crystal data

  • C7H14NO5P

  • M r = 223.16

  • Monoclinic, Inline graphic

  • a = 10.0498 (2) Å

  • b = 11.3501 (2) Å

  • c = 10.4587 (2) Å

  • β = 115.377 (1)°

  • V = 1077.87 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.35 × 0.35 × 0.25 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.917, T max = 0.940

  • 17626 measured reflections

  • 2673 independent reflections

  • 2411 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.119

  • S = 1.08

  • 2673 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003898/jh2262sup1.cif

e-67-0o584-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003898/jh2262Isup2.hkl

e-67-0o584-Isup2.hkl (131.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 2.03 2.902 (2) 169
C4—H4B⋯O2ii 0.98 2.43 3.319 (2) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0009089).

supplementary crystallographic information

Comment

Monocrotophos (systematic name: dimethyl (E)-1-methyl-2- (methylcarbamoyl)vinyl phosphate), is a kind of insecticide with a wide range of insects and mites (Dureja, 1989; Chakravarthi et al., 2007). However it's crystal structure has not been reported yet.

In the title compound (Scheme 1, Fig.1), the phosphate group displays rotational disorder with occupancies of 0.832 (6):0.167 (6). The dihedral angle between the acrylamide group and PO2 planes (P1/O1/O2) of the phosphate group is 75.69 (7)°. All bond lengths and bond angles are normal and comparable to those observed in similar structures (Osman & El-Samahy, 2007).

In the crystal structure, as shown in Fig. 2, weak intermolecular N—H···O and C—H···O hydrogen bonds are observed (Table 1). These intermolecular interactions may be contribute to the stabilization of the packing.

Experimental

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement

During refinement, atoms O1, O2 and O3 of the phosphate group are disordered and were refined using a split model. The corresponding site-occupation factors were refined so that their sum was unity [0.832 (6) and 0.167 (6)]. All H-atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(N) for NH, d(C—H) = 0.98 Å, Uiso = 1.2Ueq(C) for CH and d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for CH3 groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme: the major part is drawn with solid lines, the minor one with open lines. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Crystal packing of the title compound with intermolecular N—H···O and C—H···O interactions shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity. [Symmetry codes: (i) x + 1/2, -y + 1/2, z + 1/2; (ii) x - 1/2, -y + 1/2, z - 1/2; (iii) x + 1, y, z + 1; (iv) -x + 1.5, y + 1/2, -z + 1/2; (v) -x + 1, -y + 1, -z; (vi) -x + 2, -y + 1, -z + 1; (vii) -x + 2.5, y + 1/2, -z + 1.5.)

Crystal data

C7H14NO5P F(000) = 472
Mr = 223.16 Dx = 1.375 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 9925 reflections
a = 10.0498 (2) Å θ = 2.4–28.3°
b = 11.3501 (2) Å µ = 0.25 mm1
c = 10.4587 (2) Å T = 173 K
β = 115.377 (1)° Block, colourless
V = 1077.87 (4) Å3 0.35 × 0.35 × 0.25 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2673 independent reflections
Radiation source: fine-focus sealed tube 2411 reflections with I > 2σ(I)
graphite Rint = 0.032
φ and ω scans θmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→13
Tmin = 0.917, Tmax = 0.940 k = −15→15
17626 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.3928P] where P = (Fo2 + 2Fc2)/3
2673 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
P1 0.72597 (4) 0.12670 (3) 0.30753 (4) 0.02990 (14)
O1 0.87089 (17) 0.17794 (17) 0.35222 (16) 0.0442 (4) 0.833 (2)
O2 0.60357 (16) 0.22189 (12) 0.25429 (17) 0.0421 (4) 0.833 (2)
O3 0.69477 (16) 0.05711 (13) 0.41970 (14) 0.0404 (4) 0.833 (2)
O1' 0.8042 (9) 0.2366 (7) 0.2975 (8) 0.0385 (17) 0.167 (2)
O2' 0.5877 (7) 0.1471 (7) 0.3323 (7) 0.0414 (18) 0.167 (2)
O3' 0.8319 (8) 0.0599 (7) 0.4465 (7) 0.0446 (19) 0.167 (2)
O4 0.68546 (12) 0.03323 (9) 0.18490 (11) 0.0319 (2)
O5 0.75176 (15) 0.08602 (13) −0.19560 (13) 0.0486 (3)
N1 0.55391 (16) 0.20368 (14) −0.26018 (15) 0.0423 (3)
H1N 0.4883 0.2357 −0.2360 0.051*
C1 0.44938 (19) 0.19657 (18) 0.2069 (2) 0.0494 (4)
H1A 0.3929 0.2700 0.1787 0.074* 0.833 (2)
H1B 0.4335 0.1597 0.2840 0.074* 0.833 (2)
H1C 0.4168 0.1428 0.1259 0.074* 0.833 (2)
H1D 0.3692 0.2054 0.2359 0.074* 0.167 (2)
H1E 0.4189 0.1421 0.1267 0.074* 0.167 (2)
H1F 0.4726 0.2735 0.1790 0.074* 0.167 (2)
C2 0.7899 (3) −0.0384 (2) 0.4980 (2) 0.0655 (6)
H2A 0.7542 −0.0715 0.5641 0.098* 0.833 (2)
H2B 0.8904 −0.0087 0.5510 0.098* 0.833 (2)
H2C 0.7898 −0.0998 0.4321 0.098* 0.833 (2)
H2D 0.8730 −0.0660 0.5840 0.098* 0.167 (2)
H2E 0.7597 −0.1009 0.4265 0.098* 0.167 (2)
H2F 0.7073 −0.0181 0.5201 0.098* 0.167 (2)
C3 0.72637 (16) 0.04930 (12) 0.07257 (14) 0.0284 (3)
C4 0.86253 (19) −0.01539 (16) 0.09550 (19) 0.0442 (4)
H4A 0.8863 −0.0020 0.0151 0.066*
H4B 0.8477 −0.0998 0.1041 0.066*
H4C 0.9438 0.0128 0.1825 0.066*
C5 0.63716 (16) 0.11200 (13) −0.03706 (15) 0.0298 (3)
H5A 0.5546 0.1478 −0.0310 0.036*
C6 0.65555 (17) 0.13105 (13) −0.16923 (16) 0.0324 (3)
C7 0.5494 (3) 0.2307 (3) −0.3968 (2) 0.0675 (7)
H7A 0.4682 0.2854 −0.4472 0.101*
H7B 0.5341 0.1580 −0.4518 0.101*
H7C 0.6427 0.2670 −0.3841 0.101*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0279 (2) 0.0352 (2) 0.0273 (2) −0.00341 (13) 0.01246 (16) −0.00360 (13)
O1 0.0347 (8) 0.0594 (11) 0.0381 (8) −0.0165 (8) 0.0151 (6) −0.0108 (7)
O2 0.0392 (8) 0.0322 (7) 0.0528 (8) 0.0013 (5) 0.0176 (6) −0.0072 (6)
O3 0.0375 (8) 0.0562 (9) 0.0320 (7) 0.0005 (6) 0.0194 (6) 0.0036 (6)
O1' 0.045 (4) 0.034 (4) 0.044 (4) −0.014 (3) 0.027 (4) −0.011 (3)
O2' 0.027 (3) 0.062 (4) 0.039 (4) 0.006 (3) 0.019 (3) −0.006 (3)
O3' 0.038 (4) 0.053 (4) 0.031 (3) −0.004 (3) 0.004 (3) 0.005 (3)
O4 0.0373 (6) 0.0325 (5) 0.0290 (5) −0.0056 (4) 0.0172 (4) −0.0023 (4)
O5 0.0465 (7) 0.0676 (8) 0.0418 (7) 0.0217 (6) 0.0284 (6) 0.0121 (6)
N1 0.0413 (7) 0.0568 (8) 0.0342 (7) 0.0167 (6) 0.0214 (6) 0.0118 (6)
C1 0.0347 (8) 0.0538 (10) 0.0550 (11) 0.0079 (7) 0.0149 (7) −0.0083 (8)
C2 0.0593 (13) 0.0810 (15) 0.0554 (12) 0.0133 (11) 0.0237 (10) 0.0319 (11)
C3 0.0318 (7) 0.0271 (6) 0.0287 (6) −0.0031 (5) 0.0152 (5) −0.0037 (5)
C4 0.0429 (9) 0.0498 (9) 0.0429 (9) 0.0172 (7) 0.0214 (7) 0.0102 (7)
C5 0.0287 (7) 0.0333 (7) 0.0305 (7) 0.0020 (5) 0.0156 (6) −0.0014 (5)
C6 0.0318 (7) 0.0369 (7) 0.0298 (7) 0.0020 (5) 0.0147 (6) 0.0005 (5)
C7 0.0618 (13) 0.1063 (19) 0.0439 (10) 0.0368 (13) 0.0317 (10) 0.0331 (11)

Geometric parameters (Å, °)

P1—O1 1.4472 (14) C1—H1D 0.9800
P1—O1' 1.501 (7) C1—H1E 0.9800
P1—O2' 1.536 (6) C1—H1F 0.9800
P1—O2 1.5503 (14) C2—H2A 0.9800
P1—O3 1.5536 (13) C2—H2B 0.9800
P1—O4 1.5775 (11) C2—H2C 0.9800
P1—O3' 1.580 (7) C2—H2D 0.9800
O2—C1 1.439 (2) C2—H2E 0.9800
O3—C2 1.446 (2) C2—H2F 0.9800
O2'—C1 1.551 (7) C3—C5 1.321 (2)
O3'—C2 1.382 (8) C3—C4 1.479 (2)
O4—C3 1.4130 (16) C4—H4A 0.9800
O5—C6 1.2250 (19) C4—H4B 0.9800
N1—C6 1.340 (2) C4—H4C 0.9800
N1—C7 1.442 (2) C5—C6 1.487 (2)
N1—H1N 0.8800 C5—H5A 0.9500
C1—H1A 0.9800 C7—H7A 0.9800
C1—H1B 0.9800 C7—H7B 0.9800
C1—H1C 0.9800 C7—H7C 0.9800
O1—P1—O1' 37.3 (3) H1B—C1—H1F 140.3
O1—P1—O2' 138.0 (3) H1C—C1—H1F 109.3
O1'—P1—O2' 115.2 (4) H1D—C1—H1F 109.5
O1—P1—O2 111.70 (10) H1E—C1—H1F 109.5
O1'—P1—O2 75.8 (3) O3'—C2—O3 54.0 (3)
O2'—P1—O2 47.1 (3) O3'—C2—H2A 148.2
O1—P1—O3 117.47 (9) O3—C2—H2A 109.5
O1'—P1—O3 139.1 (3) O3'—C2—H2B 61.9
O2'—P1—O3 57.3 (3) O3—C2—H2B 109.5
O2—P1—O3 103.86 (8) H2A—C2—H2B 109.5
O1—P1—O4 113.96 (8) O3'—C2—H2C 102.0
O1'—P1—O4 117.5 (3) O3—C2—H2C 109.5
O2'—P1—O4 107.5 (3) H2A—C2—H2C 109.5
O2—P1—O4 106.74 (7) H2B—C2—H2C 109.5
O3—P1—O4 101.93 (7) O3'—C2—H2D 109.5
O1—P1—O3' 73.0 (3) O3—C2—H2D 148.9
O1'—P1—O3' 107.2 (4) H2A—C2—H2D 69.9
O2'—P1—O3' 102.6 (4) H2B—C2—H2D 47.5
O2—P1—O3' 141.6 (3) H2C—C2—H2D 99.4
O3—P1—O3' 48.4 (3) O3'—C2—H2E 109.5
O4—P1—O3' 105.2 (3) O3—C2—H2E 101.3
C1—O2—P1 123.79 (13) H2A—C2—H2E 100.0
C2—O3—P1 120.71 (13) H2B—C2—H2E 126.0
P1—O2'—C1 117.4 (5) H2C—C2—H2E 16.6
C2—O3'—P1 123.3 (5) H2D—C2—H2E 109.5
C3—O4—P1 121.57 (9) O3'—C2—H2F 109.5
C6—N1—C7 121.65 (15) O3—C2—H2F 62.3
C6—N1—H1N 119.2 H2A—C2—H2F 47.2
C7—N1—H1N 119.2 H2B—C2—H2F 123.9
O2—C1—O2' 48.6 (3) H2C—C2—H2F 126.0
O2—C1—H1A 109.5 H2D—C2—H2F 109.5
O2'—C1—H1A 139.2 H2E—C2—H2F 109.5
O2—C1—H1B 109.5 C5—C3—O4 117.41 (13)
O2'—C1—H1B 63.5 C5—C3—C4 130.16 (14)
H1A—C1—H1B 109.5 O4—C3—C4 112.32 (12)
O2—C1—H1C 109.5 C3—C4—H4A 109.5
O2'—C1—H1C 110.6 C3—C4—H4B 109.5
H1A—C1—H1C 109.5 H4A—C4—H4B 109.5
H1B—C1—H1C 109.5 C3—C4—H4C 109.5
O2—C1—H1D 141.2 H4A—C4—H4C 109.5
O2'—C1—H1D 109.5 H4B—C4—H4C 109.5
H1A—C1—H1D 63.8 C3—C5—C6 125.23 (13)
H1B—C1—H1D 49.0 C3—C5—H5A 117.4
H1C—C1—H1D 108.5 C6—C5—H5A 117.4
O2—C1—H1E 108.4 O5—C6—N1 122.15 (15)
O2'—C1—H1E 109.5 O5—C6—C5 124.98 (14)
H1A—C1—H1E 110.5 N1—C6—C5 112.87 (13)
H1B—C1—H1E 109.5 N1—C7—H7A 109.5
H1C—C1—H1E 1.2 N1—C7—H7B 109.5
H1D—C1—H1E 109.5 H7A—C7—H7B 109.5
O2—C1—H1F 64.3 N1—C7—H7C 109.5
O2'—C1—H1F 109.5 H7A—C7—H7C 109.5
H1A—C1—H1F 48.2 H7B—C7—H7C 109.5
O1—P1—O2—C1 −178.29 (15) O2—P1—O3'—C2 84.0 (7)
O1'—P1—O2—C1 171.5 (3) O3—P1—O3'—C2 31.1 (4)
O2'—P1—O2—C1 −42.1 (4) O4—P1—O3'—C2 −61.4 (6)
O3—P1—O2—C1 −50.73 (17) O1—P1—O4—C3 −38.76 (15)
O4—P1—O2—C1 56.53 (16) O1'—P1—O4—C3 2.6 (4)
O3'—P1—O2—C1 −88.6 (5) O2'—P1—O4—C3 134.5 (3)
O1—P1—O3—C2 −54.1 (2) O2—P1—O4—C3 85.04 (12)
O1'—P1—O3—C2 −93.8 (5) O3—P1—O4—C3 −166.34 (11)
O2'—P1—O3—C2 174.5 (4) O3'—P1—O4—C3 −116.6 (3)
O2—P1—O3—C2 −178.02 (16) P1—O2—C1—O2' 40.5 (4)
O4—P1—O3—C2 71.16 (17) P1—O2'—C1—O2 −37.8 (3)
O3'—P1—O3—C2 −28.7 (4) P1—O3'—C2—O3 −30.9 (4)
O1—P1—O2'—C1 109.6 (5) P1—O3—C2—O3' 30.5 (4)
O1'—P1—O2'—C1 71.9 (6) P1—O4—C3—C5 −85.84 (15)
O2—P1—O2'—C1 35.6 (3) P1—O4—C3—C4 97.63 (14)
O3—P1—O2'—C1 −154.4 (7) O4—C3—C5—C6 −175.23 (13)
O4—P1—O2'—C1 −61.2 (6) C4—C3—C5—C6 0.6 (3)
O3'—P1—O2'—C1 −171.9 (5) C7—N1—C6—O5 1.7 (3)
O1—P1—O3'—C2 −172.4 (7) C7—N1—C6—C5 −177.96 (19)
O1'—P1—O3'—C2 172.7 (6) C3—C5—C6—O5 3.9 (3)
O2'—P1—O3'—C2 51.0 (7) C3—C5—C6—N1 −176.46 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.88 2.03 2.902 (2) 169
C4—H4B···O2ii 0.98 2.43 3.319 (2) 151

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2262).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chakravarthi, B. K., Naravaneni, R., Philip, G. H. & Redddy, C. S. (2007). Afr. J. Biotechnol. 8, 2042–2046.
  4. Dureja, P. (1989). Bull. Environ. Contam. Toxicol. 43, 239–245. [DOI] [PubMed]
  5. Osman, F. H. & El-Samahy, F. A. (2007). Monatsh. Chem. 138, 973–978.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003898/jh2262sup1.cif

e-67-0o584-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003898/jh2262Isup2.hkl

e-67-0o584-Isup2.hkl (131.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES