Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 16;67(Pt 3):m340. doi: 10.1107/S1600536811005095

Piperazinediium tetra­chloridocadmate monohydrate

Meher El Glaoui a, Imen Ben Gharbia a, Valeria Ferretti b, Cherif Ben Nasr a,*
PMCID: PMC3051944  PMID: 21522269

Abstract

In the title compound, (C4H12N2)[CdCl4]·H2O, the [CdCl4]2− anions adopt a slightly distorted tetra­hedral configuration. In the crystal, O—H⋯Cl hydrogen bonds link the anions and water mol­ecules into corrugated inorganic chains along the b axis which are inter­connected via piperazinediiumN—H⋯O and N—H⋯Cl inter­actions into a three-dimensional framework structure.

Related literature

For common applications of organic–inorganic hybrid mat­erials, see: Kobel & Hanack (1986); Pierpont & Jung (1994). For a related structure and discussion of geometrical features, see: Sutherland & Harrison (2009). For the coordination around the CdII cation, see: El Glaoui et al. (2009).graphic file with name e-67-0m340-scheme1.jpg

Experimental

Crystal data

  • (C4H12N2)[CdCl4]·H2O

  • M r = 360.38

  • Monoclinic, Inline graphic

  • a = 6.6204 (2) Å

  • b = 12.8772 (3) Å

  • c = 14.0961 (4) Å

  • β = 92.1710 (12)°

  • V = 1200.86 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.67 mm−1

  • T = 295 K

  • 0.52 × 0.48 × 0.30 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.374, T max = 0.444

  • 8531 measured reflections

  • 3461 independent reflections

  • 2903 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.081

  • S = 1.09

  • 3461 reflections

  • 126 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −1.75 e Å−3

Data collection: Kappa-CCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005095/zs2095sup1.cif

e-67-0m340-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005095/zs2095Isup2.hkl

e-67-0m340-Isup2.hkl (166.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.93 (3) 2.35 (3) 3.254 (2) 164 (3)
N1—H2⋯Cl3 0.89 (3) 2.41 (4) 3.155 (2) 141 (3)
N2—H3⋯O1W 0.89 (3) 1.93 (3) 2.808 (3) 167 (3)
N2—H4⋯Cl4ii 0.81 (3) 2.46 (3) 3.190 (2) 151 (3)
O1W—H1W⋯Cl2iii 0.84 2.44 3.267 (3) 168
O1W—H2W⋯Cl4iv 0.85 2.54 3.304 (2) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

supplementary crystallographic information

Comment

Organic-inorganic hybrid materials continue to attract much attention due to their potential applications in various field (Kobel & Hanack, 1986; Pierpont & Jung, 1994). In this work, we report the crystal structure of one such compound, C4H12N2 [CdCl4] . H2O (I), formed from the reaction of piperazine with cadmium chloride. In (I) the asymmetric unit comprises a piperazine-1,4-diium dication, a [CdCl4]2- anion and a water molecule of solvation (Fig. 1). The atomic arrangement of (I) can be described as built up of corrugated inorganic chains of [CdCl4]2- tetrahedra and water molecules held together by O—H···Cl hydrogen bonds and extending along the b direction of the unit cell. These chains are interconnected by a set of piperazinium N—H···Cl hydrogen bonds to form layers extending along the (1 1 O) planes (Fig. 2, Table 1). Fig 3 shows that two such layers cross the unit cell at z = 1/4 and z = 3/4 and the bodies of the organic groups are located between these layers and connect them by weak C—H···Cl hydrogen bonds [C···Cl, 3.535 (3) Å], giving a three-dimensional framework structure. In the organic entity, the piperazium ring adopts a typical chair conformation and all the geometrical features agree with those found in piperazindiium tetrachlorozincate(II) (Sutherland & Harrison, 2009). It is worth noting that in the anion of (I), the Cd—Cl bond lengths and Cl—Cd—Cl bond angles are not equal, but vary with the environment around the Cl atom. The Cd—Cl bond lengths vary between 2.4418 (6) and 2.4892 (7) Å and the Cl—Cd—Cl angles range from 103.07 (2) to 115.19 (2) °. These values are in good agreement with those reported previously, clearly indicating that the [CdCl4]2- anion has a slightly distorted tetrahedral stereochemistry (El Glaoui et al. (2009).

Experimental

An aqueous solution of piperazine (4 mmol, 0.344 g), cadmium chloride (4 mmol, 0.732 g) and HCl (10 ml, 0.8 M) in a Petri dish was slowly evaporated at room temperature. Single crystals of the title compound, suitable for X-ray diffraction analysis, were obtained after several days (yield 68%).

Refinement

All N—H hydrogen atoms were found in the difference Fourier map and refined isotropically. The water hydrogen atoms were also found in the difference Fourier but their positions were kept fixed during the refinement and their Uiso values were given a value equal to 1.2 times Ueq of the parent oxygen. All C—H atoms were allowed to ride with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Dashed lines indicate N—H···O and N—H···Cl hydrogen bonds.

Fig. 2.

Fig. 2.

A projection along the c axis of the inorganic layer structure at z = 1/4.

Fig. 3.

Fig. 3.

The packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dotted lines.

Crystal data

(C4H12N2)[CdCl4]·H2O F(000) = 704
Mr = 360.38 Dx = 1.993 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8531 reflections
a = 6.6204 (2) Å θ = 2.0–30.0°
b = 12.8772 (3) Å µ = 2.67 mm1
c = 14.0961 (4) Å T = 295 K
β = 92.1710 (12)° Prismatic, colourless
V = 1200.86 (6) Å3 0.52 × 0.48 × 0.30 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 3461 independent reflections
Radiation source: fine-focus sealed tube 2903 reflections with I > 2σ(I)
graphite Rint = 0.037
φ scans and ω scans θmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan (SORTAV; Blessing, 1995) h = −9→9
Tmin = 0.374, Tmax = 0.444 k = −17→17
8531 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.4362P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
3461 reflections Δρmax = 0.78 e Å3
126 parameters Δρmin = −1.75 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0778 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.02921 (3) −0.001890 (11) 0.235463 (13) 0.03178 (9)
Cl1 0.07520 (10) −0.19208 (5) 0.22725 (4) 0.03972 (16)
Cl2 −0.34472 (9) 0.01950 (5) 0.22883 (5) 0.03628 (15)
Cl3 0.17473 (9) 0.05843 (5) 0.38740 (5) 0.03822 (15)
Cl4 0.13421 (9) 0.09489 (5) 0.09660 (5) 0.03906 (16)
N1 0.5582 (3) 0.20385 (16) 0.38723 (15) 0.0312 (4)
N2 0.7142 (3) 0.28658 (16) 0.56419 (15) 0.0321 (4)
C1 0.4546 (4) 0.29108 (19) 0.43473 (18) 0.0358 (5)
H5 0.3509 0.2636 0.4746 0.043*
H6 0.3897 0.3355 0.3871 0.043*
C2 0.6036 (4) 0.35402 (17) 0.49466 (17) 0.0343 (5)
H7 0.6991 0.3875 0.4540 0.041*
H8 0.5322 0.4077 0.5281 0.041*
C3 0.8195 (4) 0.20021 (19) 0.51588 (18) 0.0345 (5)
H9 0.8879 0.1564 0.5629 0.041*
H10 0.9203 0.2285 0.4749 0.041*
C4 0.6703 (4) 0.13687 (17) 0.45821 (17) 0.0318 (5)
H11 0.5752 0.1046 0.4998 0.038*
H12 0.7406 0.0822 0.4255 0.038*
O1W 0.4133 (3) 0.2110 (2) 0.68116 (18) 0.0644 (7)
H1 0.646 (5) 0.232 (2) 0.344 (2) 0.038 (8)*
H2 0.461 (5) 0.168 (3) 0.357 (2) 0.053 (9)*
H3 0.632 (5) 0.255 (2) 0.604 (2) 0.040 (8)*
H4 0.803 (5) 0.319 (2) 0.592 (2) 0.041 (8)*
H1W 0.3888 0.1492 0.6962 0.080*
H2W 0.3114 0.2506 0.6752 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.03183 (12) 0.03025 (13) 0.03330 (13) 0.00147 (6) 0.00181 (8) 0.00206 (6)
Cl1 0.0483 (4) 0.0303 (3) 0.0411 (3) 0.0064 (2) 0.0091 (3) −0.0011 (2)
Cl2 0.0298 (3) 0.0379 (3) 0.0412 (3) 0.0020 (2) 0.0026 (2) −0.0031 (2)
Cl3 0.0358 (3) 0.0386 (3) 0.0400 (3) −0.0045 (2) −0.0036 (2) −0.0027 (2)
Cl4 0.0327 (3) 0.0419 (3) 0.0433 (3) 0.0050 (2) 0.0105 (2) 0.0109 (3)
N1 0.0336 (11) 0.0330 (10) 0.0270 (10) −0.0009 (8) 0.0001 (8) −0.0034 (8)
N2 0.0328 (11) 0.0316 (10) 0.0320 (10) −0.0065 (8) 0.0030 (8) −0.0065 (8)
C1 0.0362 (13) 0.0354 (12) 0.0361 (13) 0.0073 (10) 0.0022 (10) 0.0015 (10)
C2 0.0417 (14) 0.0238 (10) 0.0381 (13) −0.0017 (9) 0.0097 (10) −0.0025 (9)
C3 0.0304 (12) 0.0330 (11) 0.0397 (13) 0.0019 (9) −0.0031 (10) −0.0061 (10)
C4 0.0366 (12) 0.0252 (10) 0.0333 (12) 0.0016 (9) −0.0009 (9) −0.0026 (9)
O1W 0.0435 (13) 0.0692 (14) 0.0818 (18) 0.0050 (11) 0.0183 (12) 0.0334 (13)

Geometric parameters (Å, °)

Cd1—Cl3 2.4418 (6) C1—C2 1.510 (4)
Cd1—Cl4 2.4435 (6) C1—H5 0.9700
Cd1—Cl1 2.4712 (6) C1—H6 0.9700
Cd1—Cl2 2.4891 (7) C2—H7 0.9700
N1—C1 1.488 (3) C2—H8 0.9700
N1—C4 1.497 (3) C3—C4 1.497 (3)
N1—H1 0.93 (3) C3—H9 0.9700
N1—H2 0.89 (3) C3—H10 0.9700
N2—C2 1.482 (3) C4—H11 0.9700
N2—C3 1.491 (3) C4—H12 0.9700
N2—H3 0.89 (3) O1W—H1W 0.84
N2—H4 0.81 (3) O1W—H2W 0.85
Cl3—Cd1—Cl4 115.19 (2) C2—C1—H6 109.5
Cl3—Cd1—Cl1 108.13 (2) H5—C1—H6 108.1
Cl4—Cd1—Cl1 115.38 (2) N2—C2—C1 110.57 (19)
Cl3—Cd1—Cl2 110.89 (2) N2—C2—H7 109.5
Cl4—Cd1—Cl2 103.07 (2) C1—C2—H7 109.5
Cl1—Cd1—Cl2 103.42 (2) N2—C2—H8 109.5
C1—N1—C4 111.06 (18) C1—C2—H8 109.5
C1—N1—H2 106 (2) H7—C2—H8 108.1
C4—N1—H2 111 (2) N2—C3—C4 110.14 (19)
C1—N1—H1 107.8 (18) N2—C3—H9 109.6
C4—N1—H1 111.2 (19) C4—C3—H9 109.6
H1—N1—H2 110 (3) N2—C3—H10 109.6
C2—N2—C3 111.28 (19) C4—C3—H10 109.6
C2—N2—H3 113 (2) H9—C3—H10 108.1
C3—N2—H3 104.5 (18) C3—C4—N1 110.45 (19)
C2—N2—H4 110 (2) C3—C4—H11 109.6
C3—N2—H4 106 (2) N1—C4—H11 109.6
H3—N2—H4 112 (3) C3—C4—H12 109.6
N1—C1—C2 110.8 (2) N1—C4—H12 109.6
N1—C1—H5 109.5 H11—C4—H12 108.1
C2—C1—H5 109.5 H1W—O1W—H2W 116
N1—C1—H6 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl1i 0.93 (3) 2.35 (3) 3.254 (2) 164 (3)
N1—H2···Cl3 0.89 (3) 2.41 (4) 3.155 (2) 141 (3)
N2—H3···O1W 0.89 (3) 1.93 (3) 2.808 (3) 167 (3)
N2—H4···Cl4ii 0.81 (3) 2.46 (3) 3.190 (2) 151 (3)
O1W—H1W···Cl2iii 0.84 2.44 3.267 (3) 168
O1W—H2W···Cl4iv 0.85 2.54 3.304 (2) 150

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x+1, −y+1/2, z+1/2; (iii) −x, −y, −z+1; (iv) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2095).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. El Glaoui, M., Kefi, R., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2009). Can. J. Anal. Sci. Spectrosc. 54, 282–291.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Kobel, W. & Hanack, M. (1986). Inorg. Chem. 25, 103–107.
  7. Nonius (1997). Kappa-CCD Server Software. Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Pierpont, C. G. & Jung, O. (1994). J. Am. Chem. Soc. 116, 2229–2230.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sutherland, P. A. & Harrison, W. T. A. (2009). Acta Cryst. E65, m565. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005095/zs2095sup1.cif

e-67-0m340-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005095/zs2095Isup2.hkl

e-67-0m340-Isup2.hkl (166.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES